119 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    SFMExample.cpp
 | 
						|
 * @brief   A structure-from-motion problem on a simulated dataset
 | 
						|
 * @author  Duy-Nguyen Ta
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * A structure-from-motion example with landmarks
 | 
						|
 *  - The landmarks form a 10 meter cube
 | 
						|
 *  - The robot rotates around the landmarks, always facing towards the cube
 | 
						|
 */
 | 
						|
 | 
						|
// For loading the data
 | 
						|
#include "SFMdata.h"
 | 
						|
 | 
						|
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
 | 
						|
// Each variable in the system (poses and landmarks) must be identified with a unique key.
 | 
						|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | 
						|
// Here we will use Symbols
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
 | 
						|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | 
						|
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | 
						|
// Here we will use Projection factors to model the camera's landmark observations.
 | 
						|
// Also, we will initialize the robot at some location using a Prior factor.
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/ProjectionFactor.h>
 | 
						|
 | 
						|
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | 
						|
// are nonlinear factors, we will need a Nonlinear Factor Graph.
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
 | 
						|
// Finally, once all of the factors have been added to our factor graph, we will want to
 | 
						|
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | 
						|
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
 | 
						|
// trust-region method known as Powell's Degleg
 | 
						|
#include <gtsam/nonlinear/DoglegOptimizer.h>
 | 
						|
 | 
						|
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | 
						|
// nonlinear functions around an initial linearization point, then solve the linear system
 | 
						|
// to update the linearization point. This happens repeatedly until the solver converges
 | 
						|
// to a consistent set of variable values. This requires us to specify an initial guess
 | 
						|
// for each variable, held in a Values container.
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main(int argc, char* argv[]) {
 | 
						|
 | 
						|
  // Define the camera calibration parameters
 | 
						|
  Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
 | 
						|
 | 
						|
  // Define the camera observation noise model
 | 
						|
  noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | 
						|
 | 
						|
  // Create the set of ground-truth landmarks
 | 
						|
  vector<Point3> points = createPoints();
 | 
						|
 | 
						|
  // Create the set of ground-truth poses
 | 
						|
  vector<Pose3> poses = createPoses();
 | 
						|
 | 
						|
  // Create a factor graph
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
 | 
						|
  // Add a prior on pose x1. This indirectly specifies where the origin is.
 | 
						|
  noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | 
						|
  graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
 | 
						|
 | 
						|
  // Simulated measurements from each camera pose, adding them to the factor graph
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i) {
 | 
						|
    for (size_t j = 0; j < points.size(); ++j) {
 | 
						|
      SimpleCamera camera(poses[i], *K);
 | 
						|
      Point2 measurement = camera.project(points[j]);
 | 
						|
      graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
 | 
						|
  // Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance
 | 
						|
  // between the first camera and the first landmark. All other landmark positions are interpreted using this scale.
 | 
						|
  noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
 | 
						|
  graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
 | 
						|
  graph.print("Factor Graph:\n");
 | 
						|
 | 
						|
  // Create the data structure to hold the initial estimate to the solution
 | 
						|
  // Intentionally initialize the variables off from the ground truth
 | 
						|
  Values initialEstimate;
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i)
 | 
						|
    initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
 | 
						|
  for (size_t j = 0; j < points.size(); ++j)
 | 
						|
    initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
 | 
						|
  initialEstimate.print("Initial Estimates:\n");
 | 
						|
 | 
						|
  /* Optimize the graph and print results */
 | 
						|
  Values result = DoglegOptimizer(graph, initialEstimate).optimize();
 | 
						|
  result.print("Final results:\n");
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 | 
						|
 |