3972 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			Plaintext
		
	
	
			
		
		
	
	
			3972 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			Plaintext
		
	
	
| #LyX 2.1 created this file. For more info see http://www.lyx.org/
 | ||
| \lyxformat 474
 | ||
| \begin_document
 | ||
| \begin_header
 | ||
| \textclass article
 | ||
| \use_default_options false
 | ||
| \begin_modules
 | ||
| theorems-std
 | ||
| \end_modules
 | ||
| \maintain_unincluded_children false
 | ||
| \language english
 | ||
| \language_package default
 | ||
| \inputencoding auto
 | ||
| \fontencoding global
 | ||
| \font_roman times
 | ||
| \font_sans default
 | ||
| \font_typewriter default
 | ||
| \font_math auto
 | ||
| \font_default_family rmdefault
 | ||
| \use_non_tex_fonts false
 | ||
| \font_sc false
 | ||
| \font_osf false
 | ||
| \font_sf_scale 100
 | ||
| \font_tt_scale 100
 | ||
| \graphics default
 | ||
| \default_output_format default
 | ||
| \output_sync 0
 | ||
| \bibtex_command default
 | ||
| \index_command default
 | ||
| \paperfontsize 12
 | ||
| \spacing single
 | ||
| \use_hyperref false
 | ||
| \papersize default
 | ||
| \use_geometry true
 | ||
| \use_package amsmath 1
 | ||
| \use_package amssymb 1
 | ||
| \use_package cancel 1
 | ||
| \use_package esint 0
 | ||
| \use_package mathdots 1
 | ||
| \use_package mathtools 1
 | ||
| \use_package mhchem 1
 | ||
| \use_package stackrel 1
 | ||
| \use_package stmaryrd 1
 | ||
| \use_package undertilde 1
 | ||
| \cite_engine basic
 | ||
| \cite_engine_type default
 | ||
| \biblio_style plain
 | ||
| \use_bibtopic false
 | ||
| \use_indices false
 | ||
| \paperorientation portrait
 | ||
| \suppress_date false
 | ||
| \justification true
 | ||
| \use_refstyle 0
 | ||
| \index Index
 | ||
| \shortcut idx
 | ||
| \color #008000
 | ||
| \end_index
 | ||
| \leftmargin 1in
 | ||
| \topmargin 1in
 | ||
| \rightmargin 1in
 | ||
| \bottommargin 1in
 | ||
| \secnumdepth 3
 | ||
| \tocdepth 3
 | ||
| \paragraph_separation indent
 | ||
| \paragraph_indentation default
 | ||
| \quotes_language english
 | ||
| \papercolumns 1
 | ||
| \papersides 1
 | ||
| \paperpagestyle default
 | ||
| \tracking_changes false
 | ||
| \output_changes false
 | ||
| \html_math_output 0
 | ||
| \html_css_as_file 0
 | ||
| \html_be_strict false
 | ||
| \end_header
 | ||
| 
 | ||
| \begin_body
 | ||
| 
 | ||
| \begin_layout Title
 | ||
| Lie Groups for Beginners
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Author
 | ||
| Frank Dellaert
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset CommandInset include
 | ||
| LatexCommand include
 | ||
| filename "macros.lyx"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| Motivation: Rigid Motions in the Plane
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| We will start with a small example of a robot moving in a plane, parameterized
 | ||
|  by a 
 | ||
| \emph on
 | ||
| 2D pose
 | ||
| \emph default
 | ||
|  
 | ||
| \begin_inset Formula $(x,\,y,\,\theta)$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  When we give it a small forward velocity 
 | ||
| \begin_inset Formula $v_{x}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , we know that the location changes as 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \dot{x}=v_{x}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The solution to this trivial differential equation is, with 
 | ||
| \begin_inset Formula $x_{0}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  the initial 
 | ||
| \begin_inset Formula $x$
 | ||
| \end_inset
 | ||
| 
 | ||
| -position of the robot,
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| x_{t}=x_{0}+v_{x}t
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| A similar story holds for translation in the 
 | ||
| \begin_inset Formula $y$
 | ||
| \end_inset
 | ||
| 
 | ||
|  direction, and in fact for translations in general:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| (x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0})
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Similarly for rotation we have 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| (x_{t},\,y_{t},\,\theta_{t})=(x_{0},\,y_{0},\,\theta_{0}+\omega t)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is angular velocity, measured in 
 | ||
| \begin_inset Formula $rad/s$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in counterclockwise direction.
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Float figure
 | ||
| placement h
 | ||
| wide false
 | ||
| sideways false
 | ||
| status collapsed
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| \align center
 | ||
| \begin_inset Graphics
 | ||
| 	filename images/circular.pdf
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Caption Standard
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| Robot moving along a circular trajectory.
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| However, if we combine translation and rotation, the story breaks down!
 | ||
|  We cannot write
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| (x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0}+\omega t)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The reason is that, if we move the robot a tiny bit according to the velocity
 | ||
|  vector 
 | ||
| \begin_inset Formula $(v_{x},\,v_{y},\,\omega)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , we have (to first order)
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| (x_{\delta},\,y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\,y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| but now the robot has rotated, and for the next incremental change, the
 | ||
|  velocity vector would have to be rotated before it can be applied.
 | ||
|  In fact, the robot will move on a 
 | ||
| \emph on
 | ||
| circular
 | ||
| \emph default
 | ||
|  trajectory.
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The reason is that 
 | ||
| \emph on
 | ||
| translation and rotation do not commute
 | ||
| \emph default
 | ||
| : if we rotate and then move we will end up in a different place than if
 | ||
|  we moved first, then rotated.
 | ||
|  In fact, someone once said (I forget who, kudos for who can track down
 | ||
|  the exact quote):
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Quote
 | ||
| If rotation and translation commuted, we could do all rotations before leaving
 | ||
|  home.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Float figure
 | ||
| placement h
 | ||
| wide false
 | ||
| sideways false
 | ||
| status open
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| \align center
 | ||
| \begin_inset Graphics
 | ||
| 	filename images/n-steps.pdf
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Caption Standard
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| \begin_inset CommandInset label
 | ||
| LatexCommand label
 | ||
| name "fig:n-step-program"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Approximating a circular trajectory with 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
|  steps.
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| To make progress, we have to be more precise about how the robot behaves.
 | ||
|  Specifically, let us define composition of two poses 
 | ||
| \begin_inset Formula $T_{1}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $T_{2}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T_{1}T_{2}=(x_{1},\,y_{1},\,\theta_{1})(x_{2},\,y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\,y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2})
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| This is a bit clumsy, so we resort to a trick: embed the 2D poses in the
 | ||
|  space of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  matrices, so we can define composition as matrix multiplication:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T_{1}T_{2}=\left[\begin{array}{cc}
 | ||
| R_{1} & t_{1}\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| R_{2} & t_{2}\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where the matrices 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are 2D rotation matrices defined as 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| R=\left[\begin{array}{cc}
 | ||
| \cos\theta & -\sin\theta\\
 | ||
| \sin\theta & \cos\theta
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Now a 
 | ||
| \begin_inset Quotes eld
 | ||
| \end_inset
 | ||
| 
 | ||
| tiny
 | ||
| \begin_inset Quotes erd
 | ||
| \end_inset
 | ||
| 
 | ||
|  motion of the robot can be written as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T(\delta)=\left[\begin{array}{ccc}
 | ||
| \cos\omega\delta & -\sin\omega\delta & v_{x}\delta\\
 | ||
| \sin\omega\delta & \cos\omega\delta & v_{y}\delta\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right]\approx\left[\begin{array}{ccc}
 | ||
| 1 & -\omega\delta & v_{x}\delta\\
 | ||
| \omega\delta & 1 & v_{y}\delta\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right]=I+\delta\left[\begin{array}{ccc}
 | ||
| 0 & -\omega & v_{x}\\
 | ||
| \omega & 0 & v_{y}\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Let us define the 
 | ||
| \emph on
 | ||
| 2D twist
 | ||
| \emph default
 | ||
|  vector 
 | ||
| \begin_inset Formula $\xi=(v,\omega)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and the matrix above as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \xihat\define\left[\begin{array}{ccc}
 | ||
| 0 & -\omega & v_{x}\\
 | ||
| \omega & 0 & v_{y}\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| If we wanted 
 | ||
| \begin_inset Formula $t$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to be large, we could split up 
 | ||
| \begin_inset Formula $t$
 | ||
| \end_inset
 | ||
| 
 | ||
|  into smaller timesteps, say 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of them, and compose them as follows:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T(t)\approx\left(I+\frac{t}{n}\xihat\right)\ldots\mbox{n times}\ldots\left(I+\frac{t}{n}\xihat\right)=\left(I+\frac{t}{n}\xihat\right)^{n}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The result is shown in Figure 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand ref
 | ||
| reference "fig:n-step-program"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| Of course, the perfect solution would be obtained if we take 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to infinity:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T(t)=\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| For real numbers, this series is familiar and is actually a way to compute
 | ||
|  the exponential function:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{x}=\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The series can be similarly defined for square matrices, and the final result
 | ||
|  is that we can write the motion of a robot along a circular trajectory,
 | ||
|  resulting from the 2D twist 
 | ||
| \begin_inset Formula $\xi=(v,\omega)$
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula $ $
 | ||
| \end_inset
 | ||
| 
 | ||
|  as the 
 | ||
| \emph on
 | ||
| matrix exponential
 | ||
| \emph default
 | ||
|  of 
 | ||
| \begin_inset Formula $\xihat$
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| We call this mapping from 2D twists matrices 
 | ||
| \begin_inset Formula $\xihat$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to 2D rigid transformations the 
 | ||
| \emph on
 | ||
| exponential map.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The above has all elements of Lie group theory.
 | ||
|  We call the space of 2D rigid transformations, along with the composition
 | ||
|  operation, the 
 | ||
| \emph on
 | ||
| special Euclidean group
 | ||
| \emph default
 | ||
|  
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  It is called a Lie group because it is simultaneously a topological group
 | ||
|  and a manifold, which implies that the multiplication and the inversion
 | ||
|  operations are smooth.
 | ||
|  The space of 2D twists, together with a special binary operation to be
 | ||
|  defined below, is called the Lie algebra 
 | ||
| \begin_inset Formula $\setwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  associated with 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| Basic Lie Group Concepts
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| We now define the concepts illustrated above, introduce some notation, and
 | ||
|  see what we can say in general.
 | ||
|  After this we then introduce the most commonly used Lie groups and their
 | ||
|  Lie algebras.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| A Manifold and a Group
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| A 
 | ||
| \series bold
 | ||
| Lie group
 | ||
| \series default
 | ||
|  
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is both a group 
 | ||
| \emph on
 | ||
| and
 | ||
| \emph default
 | ||
|  a manifold that possesses a smooth group operation.
 | ||
|  Associated with it is a 
 | ||
| \series bold
 | ||
| Lie Algebra
 | ||
| \series default
 | ||
|  
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
|  which, loosely speaking, can be identified with the tangent space at the
 | ||
|  identity and completely defines how the groups behaves around the identity.
 | ||
|  There is a mapping from 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
|  back to 
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
| , called the 
 | ||
| \series bold
 | ||
| exponential map
 | ||
| \series default
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \exp:\gg\rightarrow G
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| which is typically a many-to-one mapping.
 | ||
|  The corresponding inverse can be define locally around the origin and hence
 | ||
|  is a 
 | ||
| \begin_inset Quotes eld
 | ||
| \end_inset
 | ||
| 
 | ||
| logarithm
 | ||
| \begin_inset Quotes erd
 | ||
| \end_inset
 | ||
| 
 | ||
|  
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \log:G\rightarrow\gg
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| that maps elements in a neighborhood of 
 | ||
| \begin_inset Formula $id$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in G to an element in 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| An important family of Lie groups are the matrix Lie groups, whose elements
 | ||
|  are 
 | ||
| \begin_inset Formula $n\times n$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices.
 | ||
|  The set of all such matrices, together with the matrix multiplication,
 | ||
|  is called the general linear group 
 | ||
| \begin_inset Formula $GL(n)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of dimension 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and any closed subgroup of it is a
 | ||
| \series bold
 | ||
|  matrix Lie group
 | ||
| \series default
 | ||
| .
 | ||
|  Most if not all Lie groups we are interested in will be matrix Lie groups.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Lie Algebra
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The Lie Algebra 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is called an algebra because it is endowed with a binary operation, the
 | ||
|  
 | ||
| \series bold
 | ||
| Lie bracket
 | ||
| \series default
 | ||
|  
 | ||
| \begin_inset Formula $[X,Y]$
 | ||
| \end_inset
 | ||
| 
 | ||
| , the properties of which are closely related to the group operation of
 | ||
|  
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  For example, for algebras associated with matrix Lie groups, the Lie bracket
 | ||
|  is given by 
 | ||
| \begin_inset Formula $[A,B]\define AB-BA$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The relationship of the Lie bracket to the group operation is as follows:
 | ||
|  for commutative Lie groups vector addition 
 | ||
| \begin_inset Formula $X+Y$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
|  mimicks the group operation.
 | ||
|  For example, if we have 
 | ||
| \begin_inset Formula $Z=X+Y$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
| , when mapped backed to 
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
|  via the exponential map we obtain 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{Z}=e^{X+Y}=e^{X}e^{Y}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| However, this does 
 | ||
| \emph on
 | ||
| not
 | ||
| \emph default
 | ||
|  hold for non-commutative Lie groups:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| Z=\log(e^{X}e^{Y})\neq X+Y
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Instead, 
 | ||
| \begin_inset Formula $Z$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be calculated using the Baker-Campbell-Hausdorff (BCH) formula
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| key "Hall00book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Note Note
 | ||
| status collapsed
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| For commutative groups the bracket is zero and we recover 
 | ||
| \begin_inset Formula $Z=X+Y$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  For non-commutative groups we can use the BCH formula to approximate it.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Exponential Coordinates
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| For 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
| -dimensional matrix Lie groups, as a vector space the Lie algebra 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is isomorphic to 
 | ||
| \begin_inset Formula $\mathbb{R}^{n}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and we can define the hat operator 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| after "page 41"
 | ||
| key "Murray94book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| ,
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{}:x\in\mathbb{R}^{n}\rightarrow\xhat\in\gg
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| which maps 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
| -vectors 
 | ||
| \begin_inset Formula $x\in\mathbb{R}^{n}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to elements of 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  In the case of matrix Lie groups, the elements 
 | ||
| \begin_inset Formula $\xhat$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are also 
 | ||
| \begin_inset Formula $n\times n$
 | ||
| \end_inset
 | ||
| 
 | ||
|  matrices, and the map is given by
 | ||
| \begin_inset Formula 
 | ||
| \begin{equation}
 | ||
| \xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}
 | ||
| \end{equation}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where the 
 | ||
| \begin_inset Formula $G^{i}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are 
 | ||
| \begin_inset Formula $n\times n$
 | ||
| \end_inset
 | ||
| 
 | ||
|  matrices known as Lie group generators.
 | ||
|  The meaning of the map 
 | ||
| \begin_inset Formula $x\rightarrow\xhat$
 | ||
| \end_inset
 | ||
| 
 | ||
|  will depend on the group 
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and will generally have an intuitive interpretation.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Actions
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| An important concept is that of a group element acting on an element of
 | ||
|  a manifold 
 | ||
| \begin_inset Formula $M$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  For example, 2D rotations act on 2D points, 3D rotations act on 3D points,
 | ||
|  etc.
 | ||
|  In particular, a 
 | ||
| \series bold
 | ||
| left action
 | ||
| \series default
 | ||
|  of 
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
|  on 
 | ||
| \begin_inset Formula $M$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is defined as a smooth map 
 | ||
| \begin_inset Formula $\Phi:G\times M\rightarrow M$
 | ||
| \end_inset
 | ||
| 
 | ||
|  such that 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| after "Appendix A"
 | ||
| key "Murray94book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Enumerate
 | ||
| The identity element 
 | ||
| \begin_inset Formula $e$
 | ||
| \end_inset
 | ||
| 
 | ||
|  has no effect, i.e., 
 | ||
| \begin_inset Formula $\Phi(e,p)=p$
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Enumerate
 | ||
| Composing two actions can be combined into one action: 
 | ||
| \begin_inset Formula $\Phi(g,\Phi(h,p))=\Phi(gh,p)$
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The (usual) action of an 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
| -dimensional matrix group 
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is matrix-vector multiplication on 
 | ||
| \begin_inset Formula $\mathbb{R}^{n}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q=Ap
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| with 
 | ||
| \begin_inset Formula $p,q\in\mathbb{R}^{n}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $A\in G\subseteq GL(n)$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| The Adjoint Map and Adjoint Representation
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| Suppose a point 
 | ||
| \begin_inset Formula $p$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is specified as 
 | ||
| \begin_inset Formula $p'$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in the frame 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
| , i.e., 
 | ||
| \begin_inset Formula $p'=Tp$
 | ||
| \end_inset
 | ||
| 
 | ||
| , where 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
|  transforms from the global coordinates 
 | ||
| \begin_inset Formula $p$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to the local frame 
 | ||
| \begin_inset Formula $p'$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  To apply an action 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
|  we first need to undo 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
| , then apply 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and then transform the result back to 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
| : 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q'=TAT^{-1}p'
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The matrix 
 | ||
| \begin_inset Formula $TAT^{-1}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is said to be conjugate to 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and this is a central element of group theory.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| In general, the 
 | ||
| \series bold
 | ||
| adjoint map
 | ||
| \series default
 | ||
|  
 | ||
| \begin_inset Formula $\AAdd g$
 | ||
| \end_inset
 | ||
| 
 | ||
|  maps a group element 
 | ||
| \begin_inset Formula $a\in G$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to its 
 | ||
| \series bold
 | ||
| conjugate
 | ||
| \series default
 | ||
|  
 | ||
| \begin_inset Formula $gag^{-1}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  by 
 | ||
| \begin_inset Formula $g$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  This map captures conjugacy in the group 
 | ||
| \begin_inset Formula $G$
 | ||
| \end_inset
 | ||
| 
 | ||
| , but there is an equivalent notion in the Lie algebra 
 | ||
| \begin_inset Formula $\mathfrak{\gg}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , 
 | ||
| \begin_inset Note Note
 | ||
| status open
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| http://en.wikipedia.org/wiki/Exponential_map
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \AAdd ge^{\xhat}=g\exp\left(\xhat\right)g^{-1}=\exp(\Ad g{\xhat})
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a map parameterized by a group element 
 | ||
| \begin_inset Formula $g$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and is called the 
 | ||
| \emph on
 | ||
| adjoint representation
 | ||
| \emph default
 | ||
| .
 | ||
|  The intuitive explanation is that a change 
 | ||
| \begin_inset Formula $\exp\left(\xhat\right)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  defined around the origin, but applied at the group element 
 | ||
| \begin_inset Formula $g$
 | ||
| \end_inset
 | ||
| 
 | ||
| , can be written in one step by taking the adjoint 
 | ||
| \begin_inset Formula $\Ad g{\xhat}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $\xhat$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| In the special case of matrix Lie groups the adjoint can be written as 
 | ||
| \begin_inset Note Note
 | ||
| status collapsed
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \Ad T{\xhat}\define T\xhat T^{-1}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| and hence we have
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Formula 
 | ||
| \begin{equation}
 | ||
| Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\label{eq:matrixAdjoint}
 | ||
| \end{equation}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where both 
 | ||
| \begin_inset Formula $T\in G$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $\xhat\in\gg$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are 
 | ||
| \begin_inset Formula $n\times n$
 | ||
| \end_inset
 | ||
| 
 | ||
|  matrices for an 
 | ||
| \begin_inset Formula $n$
 | ||
| \end_inset
 | ||
| 
 | ||
| -dimensional Lie group.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| 2D Rotations
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| We first look at a very simple group, the 2D rotations.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Basics
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The Lie group 
 | ||
| \begin_inset Formula $\SOtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a subgroup of the general linear group 
 | ||
| \begin_inset Formula $GL(2)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $2\times2$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices.
 | ||
|  Its Lie algebra 
 | ||
| \begin_inset Formula $\sotwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is the vector space of 
 | ||
| \begin_inset Formula $2\times2$
 | ||
| \end_inset
 | ||
| 
 | ||
|  skew-symmetric matrices.
 | ||
|  Since 
 | ||
| \begin_inset Formula $\SOtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a one-dimensional manifold, 
 | ||
| \begin_inset Formula $\sotwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is isomorphic to 
 | ||
| \begin_inset Formula $\mathbb{R}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and we define
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{}:\mathbb{R}\rightarrow\sotwo
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{}:\omega\rightarrow\what=\skew{\omega}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| which maps the angle 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to the 
 | ||
| \begin_inset Formula $2\times2$
 | ||
| \end_inset
 | ||
| 
 | ||
|  skew-symmetric matrix 
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| 
 | ||
| \begin_inset Formula $\skew{\omega}$
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \skew{\omega}=\left[\begin{array}{cc}
 | ||
| 0 & -\omega\\
 | ||
| \omega & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The exponential map can be computed in closed form as 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{\skew{\omega}}=\left[\begin{array}{cc}
 | ||
| \cos\omega & -\sin\omega\\
 | ||
| \sin\omega & \cos\omega
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| \begin_inset CommandInset label
 | ||
| LatexCommand label
 | ||
| name "sub:Diagonalized2D"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Diagonalized Form
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The matrix 
 | ||
| \begin_inset Formula $\skew 1$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be diagonalized (see 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| key "Hall00book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| ) with eigenvalues 
 | ||
| \begin_inset Formula $-i$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $i$
 | ||
| \end_inset
 | ||
| 
 | ||
|  , and eigenvectors 
 | ||
| \begin_inset Formula $\left[\begin{array}{c}
 | ||
| 1\\
 | ||
| i
 | ||
| \end{array}\right]$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $\left[\begin{array}{c}
 | ||
| i\\
 | ||
| 1
 | ||
| \end{array}\right]$
 | ||
| \end_inset
 | ||
| 
 | ||
|  .
 | ||
|  Readers familiar with projective geometry will recognize these as the circular
 | ||
|  points when promoted to homogeneous coordinates.
 | ||
|  In particular:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \skew{\omega}=\left[\begin{array}{cc}
 | ||
| 0 & -\omega\\
 | ||
| \omega & 0
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| 1 & i\\
 | ||
| i & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| -i\omega & 0\\
 | ||
| 0 & i\omega
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| 1 & i\\
 | ||
| i & 1
 | ||
| \end{array}\right]^{-1}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| and hence
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{\skew{\omega}}=\frac{1}{2}\left[\begin{array}{cc}
 | ||
| 1 & i\\
 | ||
| i & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| e^{-i\omega} & 0\\
 | ||
| 0 & e^{i\omega}
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| 1 & -i\\
 | ||
| -i & 1
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| \cos\omega & -\sin\omega\\
 | ||
| \sin\omega & \cos\omega
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where the latter can be shown using 
 | ||
| \begin_inset Formula $e^{i\omega}=\cos\omega+i\sin\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Adjoint
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The adjoint for 
 | ||
| \begin_inset Formula $\sotwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is trivially equal to the identity, as is the case for 
 | ||
| \emph on
 | ||
| all
 | ||
| \emph default
 | ||
|  commutative groups:
 | ||
| \begin_inset Formula 
 | ||
| \begin{eqnarray*}
 | ||
| \Ad R\what & = & \left[\begin{array}{cc}
 | ||
| \cos\theta & -\sin\theta\\
 | ||
| \sin\theta & \cos\theta
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| 0 & -\omega\\
 | ||
| \omega & 0
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| \cos\theta & -\sin\theta\\
 | ||
| \sin\theta & \cos\theta
 | ||
| \end{array}\right]^{T}\\
 | ||
|  & = & \omega\left[\begin{array}{cc}
 | ||
| -\sin\theta & -\cos\theta\\
 | ||
| \cos\theta & -\sin\theta
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| \cos\theta & \sin\theta\\
 | ||
| -\sin\theta & \cos\theta
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| 0 & -\omega\\
 | ||
| \omega & 0
 | ||
| \end{array}\right]
 | ||
| \end{eqnarray*}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| i.e., 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \Ad R\what=\what
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Actions
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| In the case of 
 | ||
| \begin_inset Formula $\SOtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  the vector space is 
 | ||
| \begin_inset Formula $\Rtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and the group action corresponds to rotating a point
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q=Rp
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| We would now like to know what an incremental rotation parameterized by
 | ||
|  
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  would do:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q(\text{\omega})=Re^{\skew{\omega}}p
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| For small angles 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  we have 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{\skew{\omega}}\approx I+\skew{\omega}=I+\omega\skew 1
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $\skew 1$
 | ||
| \end_inset
 | ||
| 
 | ||
|  acts like a restricted 
 | ||
| \begin_inset Quotes eld
 | ||
| \end_inset
 | ||
| 
 | ||
| cross product
 | ||
| \begin_inset Quotes erd
 | ||
| \end_inset
 | ||
| 
 | ||
|  in the plane on points: 
 | ||
| \begin_inset Formula 
 | ||
| \begin{equation}
 | ||
| \skew 1\left[\begin{array}{c}
 | ||
| x\\
 | ||
| y
 | ||
| \end{array}\right]=R_{\pi/2}\left[\begin{array}{c}
 | ||
| x\\
 | ||
| y
 | ||
| \end{array}\right]=\left[\begin{array}{c}
 | ||
| -y\\
 | ||
| x
 | ||
| \end{array}\right]\label{eq:RestrictedCross}
 | ||
| \end{equation}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Hence the derivative of the action is given as 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\omega}}p\right)=R\deriv{}{\omega}\left(\omega\skew 1p\right)=RH_{p}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $H_{p}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a 
 | ||
| \begin_inset Formula $2\times1$
 | ||
| \end_inset
 | ||
| 
 | ||
|  matrix that depends on 
 | ||
| \begin_inset Formula $p$
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| H_{p}\define\skew 1p=\left[\begin{array}{c}
 | ||
| -p_{y}\\
 | ||
| p_{x}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| 2D Rigid Transformations
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Basics
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The Lie group 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a subgroup of the general linear group 
 | ||
| \begin_inset Formula $GL(3)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices of the form
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T\define\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $R\in\SOtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a rotation matrix and 
 | ||
| \begin_inset Formula $t\in\Rtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a translation vector.
 | ||
|  
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is the 
 | ||
| \emph on
 | ||
| semi-direct product
 | ||
| \emph default
 | ||
|  of 
 | ||
| \begin_inset Formula $\Rtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  by 
 | ||
| \begin_inset Formula $SO(2)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , written as 
 | ||
| \begin_inset Formula $\SEtwo=\Rtwo\rtimes\SOtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  In particular, any element 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be written as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T=\left[\begin{array}{cc}
 | ||
| 0 & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| R & 0\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| and they compose as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T_{1}T_{2}=\left[\begin{array}{cc}
 | ||
| R_{1} & t_{1}\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| R_{2} & t_{2}\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Hence, an alternative way of writing down elements of 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is as the ordered pair 
 | ||
| \begin_inset Formula $(R,\,t)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with composition defined a
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| (R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The corresponding Lie algebra 
 | ||
| \begin_inset Formula $\setwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is the vector space of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  twists 
 | ||
| \begin_inset Formula $\xihat$
 | ||
| \end_inset
 | ||
| 
 | ||
|  parameterized by the 
 | ||
| \emph on
 | ||
| twist coordinates
 | ||
| \emph default
 | ||
|  
 | ||
| \begin_inset Formula $\xi\in\Rthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with the mapping 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \xi\define\left[\begin{array}{c}
 | ||
| v\\
 | ||
| \omega
 | ||
| \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
 | ||
| \skew{\omega} & v\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Note we think of robots as having a pose 
 | ||
| \begin_inset Formula $(x,y,\theta)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and hence I reserved the first two components for translation and the last
 | ||
|  for rotation.
 | ||
|  
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| The corresponding Lie group generators are
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{x}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc}
 | ||
| 0 & -1 & 0\\
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| Applying the exponential map to a twist 
 | ||
| \begin_inset Formula $\xi$
 | ||
| \end_inset
 | ||
| 
 | ||
|  yields a screw motion yielding an element in 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| : 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T=e^{\xihat}=\left(e^{\skew{\omega}},(I-e^{\skew{\omega}})\frac{v^{\perp}}{\omega}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| The Adjoint Map
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The adjoint is 
 | ||
| \begin_inset Formula 
 | ||
| \begin{eqnarray}
 | ||
| \Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\
 | ||
|  & = & =\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| \skew{\omega} & v\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| R^{T} & -R^{T}t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\nonumber \\
 | ||
|  & = & \left[\begin{array}{cc}
 | ||
| \skew{\omega} & -\skew{\omega}t+Rv\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]\nonumber \\
 | ||
|  & = & \left[\begin{array}{cc}
 | ||
| \skew{\omega} & Rv-t^{\perp}\omega\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]\label{eq:adjointSE2}
 | ||
| \end{eqnarray}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| From this we can express the Adjoint map in terms of plane twist coordinates:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \left[\begin{array}{c}
 | ||
| v'\\
 | ||
| \omega'
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R & -t^{\perp}\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| v\\
 | ||
| \omega
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Actions
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The action of 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  on 2D points is done by embedding the points in 
 | ||
| \begin_inset Formula $\mathbb{R}^{3}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  by using homogeneous coordinates
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{q}=\left[\begin{array}{c}
 | ||
| q\\
 | ||
| 1
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| p\\
 | ||
| 1
 | ||
| \end{array}\right]=T\hat{p}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Analoguous to 
 | ||
| \begin_inset Formula $\SEthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  (see below), we can compute a velocity 
 | ||
| \begin_inset Formula $\xihat\hat{p}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in the local 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
|  frame: 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \xihat\hat{p}=\left[\begin{array}{cc}
 | ||
| \skew{\omega} & v\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| p\\
 | ||
| 1
 | ||
| \end{array}\right]=\left[\begin{array}{c}
 | ||
| \skew{\omega}p+v\\
 | ||
| 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| By only taking the top two rows, we can write this as a velocity in 
 | ||
| \begin_inset Formula $\Rtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| , as the product of a 
 | ||
| \begin_inset Formula $2\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  matrix 
 | ||
| \begin_inset Formula $H_{p}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  that acts upon the exponential coordinates 
 | ||
| \begin_inset Formula $\xi$
 | ||
| \end_inset
 | ||
| 
 | ||
|  directly:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc}
 | ||
| I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c}
 | ||
| v\\
 | ||
| \omega
 | ||
| \end{array}\right]=H_{p}\xi
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| 3D Rotations
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Basics
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The Lie group 
 | ||
| \begin_inset Formula $\SOthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a subgroup of the general linear group 
 | ||
| \begin_inset Formula $GL(3)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices.
 | ||
|  Its Lie algebra 
 | ||
| \begin_inset Formula $\sothree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is the vector space of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  skew-symmetric matrices 
 | ||
| \begin_inset Formula $\what$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  Since 
 | ||
| \begin_inset Formula $\SOthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a three-dimensional manifold, 
 | ||
| \begin_inset Formula $\sothree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is isomorphic to 
 | ||
| \begin_inset Formula $\Rthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and we define the map
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{}:\Rthree\rightarrow\sothree
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{}:\omega\rightarrow\what=\Skew{\omega}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| which maps 3-vectors 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to skew-symmetric matrices 
 | ||
| \begin_inset Formula $\Skew{\omega}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  :
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \Skew{\omega}=\left[\begin{array}{ccc}
 | ||
| 0 & -\omega_{z} & \omega_{y}\\
 | ||
| \omega_{z} & 0 & -\omega_{x}\\
 | ||
| -\omega_{y} & \omega_{x} & 0
 | ||
| \end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Here the matrices 
 | ||
| \begin_inset Formula $G^{i}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are the generators for 
 | ||
| \begin_inset Formula $\SOthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| ,
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{x}=\left(\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & -1\\
 | ||
| 0 & 1 & 0
 | ||
| \end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc}
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0\\
 | ||
| -1 & 0 & 0
 | ||
| \end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc}
 | ||
| 0 & -1 & 0\\
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| corresponding to a rotation around 
 | ||
| \begin_inset Formula $X$
 | ||
| \end_inset
 | ||
| 
 | ||
| , 
 | ||
| \begin_inset Formula $Y$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and 
 | ||
| \begin_inset Formula $Z$
 | ||
| \end_inset
 | ||
| 
 | ||
| , respectively.
 | ||
|  The Lie bracket 
 | ||
| \begin_inset Formula $[x,y]$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in 
 | ||
| \begin_inset Formula $\sothree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  corresponds to the cross product 
 | ||
| \begin_inset Formula $x\times y$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in 
 | ||
| \begin_inset Formula $\Rthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| Hence, for every 
 | ||
| \begin_inset Formula $3$
 | ||
| \end_inset
 | ||
| 
 | ||
| -vector 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  there is a corresponding rotation matrix
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| R=e^{\Skew{\omega}}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| which defines a canonical parameterization of 
 | ||
| \begin_inset Formula $\SOthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  known as the canonical or exponential coordinates.
 | ||
|  It is equivalent to the axis-angle representation for rotations, where
 | ||
|  the unit vector 
 | ||
| \begin_inset Formula $\omega/\theta$
 | ||
| \end_inset
 | ||
| 
 | ||
|  defines the rotation axis, and its magnitude the amount of rotation 
 | ||
| \begin_inset Formula $\theta$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The exponential map can be computed in closed form using 
 | ||
| \series bold
 | ||
| Rodrigues' formula
 | ||
| \series default
 | ||
|  
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| after "page 28"
 | ||
| key "Murray94book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Formula 
 | ||
| \begin{equation}
 | ||
| e^{\what}=I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}\cos\theta}{\theta^{2}}\what^{2}\label{eq:Rodrigues}
 | ||
| \end{equation}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $\what^{2}=\omega\omega^{T}-I$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with 
 | ||
| \begin_inset Formula $\omega\omega^{T}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  the outer product of 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  Hence, a slightly more efficient variant is
 | ||
| \begin_inset Formula 
 | ||
| \begin{equation}
 | ||
| e^{\what}=\left(\cos\theta\right)I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}cos\theta}{\theta^{2}}\omega\omega^{T}\label{eq:Rodrigues2}
 | ||
| \end{equation}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Diagonalized Form
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| Because a 3D rotation 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
|  leaves the axis 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  unchanged, 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be diagonalized as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| R=C\left(\begin{array}{ccc}
 | ||
| e^{-i\theta} & 0 & 0\\
 | ||
| 0 & e^{i\theta} & 0\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right)C^{-1}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| with 
 | ||
| \begin_inset Formula $C=\left(\begin{array}{ccc}
 | ||
| c_{1} & c_{2} & \omega/\theta\end{array}\right)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , where 
 | ||
| \begin_inset Formula $c_{1}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $c_{2}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are the complex eigenvectors corresponding to the 2D rotation around 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  This also means that, by 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand eqref
 | ||
| reference "eq:matrixAdjoint"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| ,
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{\omega}=C\left(\begin{array}{ccc}
 | ||
| -i\theta & 0 & 0\\
 | ||
| 0 & i\theta & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right)C^{-1}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| In this case, 
 | ||
| \begin_inset Formula $C$
 | ||
| \end_inset
 | ||
| 
 | ||
|  has complex columns, but we also have
 | ||
| \begin_inset Formula 
 | ||
| \begin{equation}
 | ||
| \hat{\omega}=B\left(\begin{array}{ccc}
 | ||
| 0 & -\theta & 0\\
 | ||
| \theta & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right)B^{T}\label{eq:OmegaDecomposed}
 | ||
| \end{equation}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| with 
 | ||
| \begin_inset Formula $B=\left(\begin{array}{ccc}
 | ||
| b_{1} & b_{2} & \omega/\theta\end{array}\right)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , where 
 | ||
| \begin_inset Formula $b_{1}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $b_{2}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  form a basis for the 2D plane through the origin and perpendicular to 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  Clearly, from Section 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand ref
 | ||
| reference "sub:Diagonalized2D"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| , we have 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| c_{1}=B\left(\begin{array}{c}
 | ||
| 1\\
 | ||
| i\\
 | ||
| 0
 | ||
| \end{array}\right)\mbox{\,\,\,\ and\,\,\,\,\,}c_{2}=B\left(\begin{array}{c}
 | ||
| i\\
 | ||
| 1\\
 | ||
| 0
 | ||
| \end{array}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| and when we exponentiate 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand eqref
 | ||
| reference "eq:OmegaDecomposed"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
|  we expose the 2D rotation around the axis 
 | ||
| \begin_inset Formula $\omega/\theta$
 | ||
| \end_inset
 | ||
| 
 | ||
|  with magnitude 
 | ||
| \begin_inset Formula $\theta$
 | ||
| \end_inset
 | ||
| 
 | ||
| : 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| R=B\left(\begin{array}{ccc}
 | ||
| \cos\theta & -\sin\theta & 0\\
 | ||
| \sin\theta & \cos\theta & 0\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right)B^{T}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The latter form for 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be used to prove Rodrigues' formula.
 | ||
|  Expanding the above, we get
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| R=\left(\cos\theta\right)\left(b_{1}b_{1}^{T}+b_{2}b_{2}^{T}\right)+\left(\sin\theta\right)\left(b_{2}b_{1}^{T}-b_{1}b_{2}^{T}\right)+\omega\omega^{T}/\theta^{2}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \strikeout off
 | ||
| \uuline off
 | ||
| \uwave off
 | ||
| \noun off
 | ||
| \color none
 | ||
| 
 | ||
| \begin_inset Note Note
 | ||
| status collapsed
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| 
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \strikeout off
 | ||
| \uuline off
 | ||
| \uwave off
 | ||
| \noun off
 | ||
| \color none
 | ||
| \begin_inset Formula 
 | ||
| \begin{eqnarray*}
 | ||
| R & = & \left(\begin{array}{ccc}
 | ||
| b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{ccc}
 | ||
| \cos\theta & -\sin\theta & 0\\
 | ||
| \sin\theta & \cos\theta & 0\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right)\left(\begin{array}{c}
 | ||
| b_{1}^{T}\\
 | ||
| b_{2}^{T}\\
 | ||
| \omega^{T}/\theta
 | ||
| \end{array}\right)\\
 | ||
|  & = & \left(\begin{array}{ccc}
 | ||
| b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{c}
 | ||
| b_{1}^{T}\cos\theta-b_{2}^{T}\sin\theta\\
 | ||
| b_{1}^{T}\sin\theta+b_{2}^{T}\cos\theta\\
 | ||
| \omega^{T}/\theta
 | ||
| \end{array}\right)\\
 | ||
|  & = & b_{1}b_{1}^{T}\cos\theta-b_{1}b_{2}^{T}\sin\theta+b_{2}b_{1}^{T}\sin\theta+b_{2}b_{2}^{T}\cos\theta+\omega\omega^{T}/\theta^{2}
 | ||
| \end{eqnarray*}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Because 
 | ||
| \begin_inset Formula $B$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a rotation matrix, we have 
 | ||
| \begin_inset Formula $BB^{T}=b_{1}b_{1}^{T}+b_{2}b_{2}^{T}+\omega\omega^{T}/\theta^{2}=I$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and using 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand eqref
 | ||
| reference "eq:OmegaDecomposed"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
|  it is easy to show that 
 | ||
| \begin_inset Formula $b_{2}b_{1}^{T}-b_{1}b_{2}^{T}=\hat{\omega}/\theta$
 | ||
| \end_inset
 | ||
| 
 | ||
| , hence
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \strikeout default
 | ||
| \uuline default
 | ||
| \uwave default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| R=\left(\cos\theta\right)(I-\omega\omega^{T}/\theta^{2})+\left(\sin\theta\right)\left(\hat{\omega}/\theta\right)+\omega\omega^{T}/\theta^{2}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| which is equivalent to 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand eqref
 | ||
| reference "eq:Rodrigues2"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| The Adjoint Map
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| For rotation matrices 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
|  we can prove the following identity (see 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand vref
 | ||
| reference "proof1"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| ): 
 | ||
| \begin_inset Formula 
 | ||
| \begin{equation}
 | ||
| R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}
 | ||
| \end{equation}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Hence, given property 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand eqref
 | ||
| reference "eq:property1"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| , the adjoint map for 
 | ||
| \begin_inset Formula $\sothree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  simplifies to
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| and this can be expressed in exponential coordinates simply by rotating
 | ||
|  the axis 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to 
 | ||
| \begin_inset Formula $R\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| As an example, to apply an axis-angle rotation 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to a point 
 | ||
| \begin_inset Formula $p$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in the frame 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
| , we could:
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Enumerate
 | ||
| First transform 
 | ||
| \begin_inset Formula $p$
 | ||
| \end_inset
 | ||
| 
 | ||
|  back to the world frame, apply 
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and then rotate back:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q=Re^{\Skew{\omega}}R^{T}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Enumerate
 | ||
| Immediately apply the transformed axis-angle transformation 
 | ||
| \begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q=e^{\Skew{R\omega}}p
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Actions
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| In the case of 
 | ||
| \begin_inset Formula $\SOthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  the vector space is  
 | ||
| \begin_inset Formula $\Rthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and the group action corresponds to rotating a point
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q=Rp
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| We would now like to know what an incremental rotation parameterized by
 | ||
|  
 | ||
| \begin_inset Formula $\omega$
 | ||
| \end_inset
 | ||
| 
 | ||
|  would do:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| q(\omega)=Re^{\Skew{\omega}}p
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| hence the derivative is:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=R\Skew{-p}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| To show the last equality note that 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| 3D Rigid Transformations
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The Lie group 
 | ||
| \begin_inset Formula $\SEthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a subgroup of the general linear group 
 | ||
| \begin_inset Formula $GL(4)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $4\times4$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices of the form
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T\define\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $R\in\SOthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a rotation matrix and 
 | ||
| \begin_inset Formula $t\in\Rthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a translation vector.
 | ||
|  An alternative way of writing down elements of 
 | ||
| \begin_inset Formula $\SEthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is as the ordered pair 
 | ||
| \begin_inset Formula $(R,\,t)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with composition defined as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| (R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
|  Its Lie algebra 
 | ||
| \begin_inset Formula $\sethree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is the vector space of 
 | ||
| \begin_inset Formula $4\times4$
 | ||
| \end_inset
 | ||
| 
 | ||
|  twists 
 | ||
| \begin_inset Formula $\xihat$
 | ||
| \end_inset
 | ||
| 
 | ||
|  parameterized by the 
 | ||
| \emph on
 | ||
| twist coordinates
 | ||
| \emph default
 | ||
|  
 | ||
| \begin_inset Formula $\xi\in\Rsix$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with the mapping 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| key "Murray94book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
|  
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \xi\define\left[\begin{array}{c}
 | ||
| \omega\\
 | ||
| v
 | ||
| \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
 | ||
| \Skew{\omega} & v\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Note we follow Frank Park's convention and reserve the first three components
 | ||
|  for rotation, and the last three for translation.
 | ||
|  Hence, with this parameterization, the generators for 
 | ||
| \begin_inset Formula $\SEthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{1}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & -1 & 0\\
 | ||
| 0 & 1 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 1 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| -1 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
 | ||
| 0 & -1 & 0 & 0\\
 | ||
| 1 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{4}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 1\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 1\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 1\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Applying the exponential map to a twist 
 | ||
| \begin_inset Formula $\xi$
 | ||
| \end_inset
 | ||
| 
 | ||
|  yields a screw motion yielding an element in 
 | ||
| \begin_inset Formula $\SEthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| : 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T=\exp\xihat
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| A closed form solution for the exponential map is given in 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| after "page 42"
 | ||
| key "Murray94book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| 
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \exp\left(\widehat{\left[\begin{array}{c}
 | ||
| \omega\\
 | ||
| v
 | ||
| \end{array}\right]}t\right)=\left[\begin{array}{cc}
 | ||
| e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| The Adjoint Map
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The adjoint is 
 | ||
| \begin_inset Formula 
 | ||
| \begin{eqnarray*}
 | ||
| \Ad T{\xihat} & = & T\xihat T^{-1}\\
 | ||
|  & = & \left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| \Skew{\omega} & v\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| R^{T} & -R^{T}t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\\
 | ||
|  & = & \left[\begin{array}{cc}
 | ||
| \Skew{R\omega} & -\Skew{R\omega}t+Rv\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]\\
 | ||
|  & = & \left[\begin{array}{cc}
 | ||
| \Skew{R\omega} & t\times R\omega+Rv\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]
 | ||
| \end{eqnarray*}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| From this we can express the Adjoint map in terms of twist coordinates (see
 | ||
|  also 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| key "Murray94book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
|  and FP):
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \left[\begin{array}{c}
 | ||
| \omega'\\
 | ||
| v'
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R & 0\\
 | ||
| \Skew tR & R
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| \omega\\
 | ||
| v
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Actions
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The action of 
 | ||
| \begin_inset Formula $\SEthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  on 3D points is done by embedding the points in 
 | ||
| \begin_inset Formula $\mathbb{R}^{4}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  by using homogeneous coordinates
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{q}=\left[\begin{array}{c}
 | ||
| q\\
 | ||
| 1
 | ||
| \end{array}\right]=\left[\begin{array}{c}
 | ||
| Rp+t\\
 | ||
| 1
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| p\\
 | ||
| 1
 | ||
| \end{array}\right]=T\hat{p}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| We would now like to know what an incremental pose parameterized by 
 | ||
| \begin_inset Formula $\xi$
 | ||
| \end_inset
 | ||
| 
 | ||
|  would do:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{q}(\xi)=Te^{\xihat}\hat{p}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| hence the derivative is
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $\xihat\hat{p}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  corresponds to a velocity in 
 | ||
| \begin_inset Formula $\mathbb{R}^{4}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  (in the local 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
|  frame): 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \xihat\hat{p}=\left[\begin{array}{cc}
 | ||
| \Skew{\omega} & v\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| p\\
 | ||
| 1
 | ||
| \end{array}\right]=\left[\begin{array}{c}
 | ||
| \omega\times p+v\\
 | ||
| 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Notice how velocities are analogous to points at infinity in projective
 | ||
|  geometry: they correspond to free vectors indicating a direction and magnitude
 | ||
|  of change.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| By only taking the top three rows, we can write this as a velocity in 
 | ||
| \begin_inset Formula $\Rthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| , as the product of a 
 | ||
| \begin_inset Formula $3\times6$
 | ||
| \end_inset
 | ||
| 
 | ||
|  matrix 
 | ||
| \begin_inset Formula $H_{p}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  that acts upon the exponential coordinates 
 | ||
| \begin_inset Formula $\xi$
 | ||
| \end_inset
 | ||
| 
 | ||
|  directly:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc}
 | ||
| -\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c}
 | ||
| \omega\\
 | ||
| v
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| yielding the derivative
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=T\left[\begin{array}{cc}
 | ||
| -\Skew p & I_{3}\\
 | ||
| 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The inverse action 
 | ||
| \begin_inset Formula $T^{-1}p$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{q}=\left[\begin{array}{c}
 | ||
| q\\
 | ||
| 1
 | ||
| \end{array}\right]=\left[\begin{array}{c}
 | ||
| R^{T}(p-t)\\
 | ||
| 1
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R^{T} & -R^{T}t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| p\\
 | ||
| 1
 | ||
| \end{array}\right]=T^{-1}\hat{p}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| 3D Similarity Transformations
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The group of 3D similarity transformations 
 | ||
| \begin_inset Formula $Sim(3)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is the set of 
 | ||
| \begin_inset Formula $4\times4$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices of the form
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| T\define\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & s^{-1}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $s$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a scalar.
 | ||
|  There are several different conventions in use for the Lie algebra generators,
 | ||
|  but we use
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{1}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & -1 & 0\\
 | ||
| 0 & 1 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 1 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| -1 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
 | ||
| 0 & -1 & 0 & 0\\
 | ||
| 1 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{4}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 1\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 1\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 1\\
 | ||
| 0 & 0 & 0 & 0
 | ||
| \end{array}\right)\mbox{ }G^{7}=\left(\begin{array}{cccc}
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & 0\\
 | ||
| 0 & 0 & 0 & -1
 | ||
| \end{array}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Actions
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The action of 
 | ||
| \begin_inset Formula $\SEthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  on 3D points is done by embedding the points in 
 | ||
| \begin_inset Formula $\mathbb{R}^{4}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  by using homogeneous coordinates
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \hat{q}=\left[\begin{array}{c}
 | ||
| q\\
 | ||
| s^{-1}
 | ||
| \end{array}\right]=\left[\begin{array}{c}
 | ||
| Rp+t\\
 | ||
| s^{-1}
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & s^{-1}
 | ||
| \end{array}\right]\left[\begin{array}{c}
 | ||
| p\\
 | ||
| 1
 | ||
| \end{array}\right]=T\hat{p}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| The derivative 
 | ||
| \begin_inset Formula $D_{1}f(\xi)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  in an incremental change 
 | ||
| \begin_inset Formula $\xi$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to 
 | ||
| \begin_inset Formula $T$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is given by 
 | ||
| \begin_inset Formula $TH(p)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  where 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| H(p)=G_{jk}^{i}p^{j}=\left(\begin{array}{ccccccc}
 | ||
| 0 & z & -y & 1 & 0 & 0 & 0\\
 | ||
| -z & 0 & x & 0 & 1 & 0 & 0\\
 | ||
| y & -x & 0 & 0 & 0 & 1 & 0\\
 | ||
| 0 & 0 & 0 & 0 & 0 & 0 & -1
 | ||
| \end{array}\right)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| In other words
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| D_{1}f(\xi)=\left[\begin{array}{cc}
 | ||
| R & t\\
 | ||
| 0 & s^{-1}
 | ||
| \end{array}\right]\left[\begin{array}{ccc}
 | ||
| -\left[p\right]_{x} & I_{3} & 0\\
 | ||
| 0 & 0 & -1
 | ||
| \end{array}\right]=\left[\begin{array}{ccc}
 | ||
| -R\left[p\right]_{x} & R & -t\\
 | ||
| 0 & 0 & -s^{-1}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| This is the derivative for the action on homogeneous coordinates.
 | ||
|  Switching back to non-homogeneous coordinates is done by
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \left[\begin{array}{c}
 | ||
| q\\
 | ||
| a
 | ||
| \end{array}\right]\rightarrow q/a
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| with derivative
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \left[\begin{array}{cc}
 | ||
| a^{-1}I_{3} & -qa^{-2}\end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| For 
 | ||
| \begin_inset Formula $a=s^{-1}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  we obtain
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| D_{1}f(\xi)=\left[\begin{array}{cc}
 | ||
| sI_{3} & -qs^{2}\end{array}\right]\left[\begin{array}{ccc}
 | ||
| -R\left[p\right]_{x} & R & -t\\
 | ||
| 0 & 0 & -s^{-1}
 | ||
| \end{array}\right]=\left[\begin{array}{ccc}
 | ||
| -sR\left[p\right]_{x} & sR & -st+qs\end{array}\right]=\left[\begin{array}{ccc}
 | ||
| -sR\left[p\right]_{x} & sR & sRp\end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| 2D Affine Transformations
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The Lie group 
 | ||
| \begin_inset Formula $Aff(2)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a subgroup of the general linear group 
 | ||
| \begin_inset Formula $GL(3)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices that maps the line infinity to itself, and hence preserves
 | ||
|  paralellism.
 | ||
|  The affine transformation matrices 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be written as 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| key "Mei08tro"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \left[\begin{array}{ccc}
 | ||
| m_{11} & m_{12} & t_{1}\\
 | ||
| m_{21} & m_{22} & t_{2}\\
 | ||
| 0 & 0 & k
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| with 
 | ||
| \begin_inset Formula $M\in GL(2)$
 | ||
| \end_inset
 | ||
| 
 | ||
| , 
 | ||
| \begin_inset Formula $t\in\Rtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and 
 | ||
| \begin_inset Formula $k$
 | ||
| \end_inset
 | ||
| 
 | ||
|  a scalar chosen such that 
 | ||
| \begin_inset Formula $det(A)=1$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| Note that just as 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a semi-direct product, so too is 
 | ||
| \begin_inset Formula $Aff(2)=\Rtwo\rtimes GL(2)$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  In particular, any affine transformation 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be written as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| A=\left[\begin{array}{cc}
 | ||
| 0 & t\\
 | ||
| 0 & 1
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| M & 0\\
 | ||
| 0 & k
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| and they compose as
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| A_{1}A_{2}=\left[\begin{array}{cc}
 | ||
| M_{1} & t_{1}\\
 | ||
| 0 & k_{1}
 | ||
| \end{array}\right]\left[\begin{array}{cc}
 | ||
| M_{2} & t_{2}\\
 | ||
| 0 & k_{2}
 | ||
| \end{array}\right]=\left[\begin{array}{cc}
 | ||
| M_{1}M_{2} & M_{2}t_{2}+k_{2}t_{1}\\
 | ||
| 0 & k_{1}k_{2}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| From this it can be gleaned that the groups 
 | ||
| \begin_inset Formula $\SOtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $\SEtwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are both subgroups, with 
 | ||
| \begin_inset Formula $\SOtwo\subset\SEtwo\subset\Afftwo$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| By choosing the generators carefully we maintain this hierarchy among the
 | ||
|  associated Lie algebras.
 | ||
|  In particular, 
 | ||
| \begin_inset Formula $\setwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{1}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
 | ||
| 0 & -1 & 0\\
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| can be extended to the 
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| Lie algebra
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
|  
 | ||
| \begin_inset Formula $\afftwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  using the three additional generators
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{4}=\left[\begin{array}{ccc}
 | ||
| 0 & 1 & 0\\
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & -1 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & -1 & 0\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| Hence, the Lie algebra 
 | ||
| \begin_inset Formula $\afftwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is the vector space of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  incremental affine transformations 
 | ||
| \begin_inset Formula $\ahat$
 | ||
| \end_inset
 | ||
| 
 | ||
|  parameterized by 6 parameters 
 | ||
| \begin_inset Formula $\aa\in\mathbb{R}^{6}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with the mapping 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \aa\rightarrow\ahat\define\left[\begin{array}{ccc}
 | ||
| a_{5} & a_{4}-a_{3} & a_{1}\\
 | ||
| a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\
 | ||
| 0 & 0 & a_{6}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Note that 
 | ||
| \begin_inset Formula $G_{5}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $G_{6}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  change the relative scale of 
 | ||
| \begin_inset Formula $x$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $y$
 | ||
| \end_inset
 | ||
| 
 | ||
|  but without changing the determinant: 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{xG_{5}}=\exp\left[\begin{array}{ccc}
 | ||
| x & 0 & 0\\
 | ||
| 0 & -x & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]=\left[\begin{array}{ccc}
 | ||
| e^{x} & 0 & 0\\
 | ||
| 0 & 1/e^{x} & 0\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{xG_{6}}=\exp\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & -x & 0\\
 | ||
| 0 & 0 & x
 | ||
| \end{array}\right]=\left[\begin{array}{ccc}
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & 1/e^{x} & 0\\
 | ||
| 0 & 0 & e^{x}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| It might be nicer to have the correspondence with scaling 
 | ||
| \begin_inset Formula $x$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $y$
 | ||
| \end_inset
 | ||
| 
 | ||
|  more direct, by choosing
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| \mbox{ }G^{5}=\left[\begin{array}{ccc}
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & -1
 | ||
| \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 1 & 0\\
 | ||
| 0 & 0 & -1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| and hence
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
|  
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{xG_{5}}=\exp\left[\begin{array}{ccc}
 | ||
| x & 0 & 0\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & -x
 | ||
| \end{array}\right]=\left[\begin{array}{ccc}
 | ||
| e^{x} & 0 & 0\\
 | ||
| 0 & 1 & 0\\
 | ||
| 0 & 0 & 1/e^{x}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| e^{xG_{6}}=\exp\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & x & 0\\
 | ||
| 0 & 0 & -x
 | ||
| \end{array}\right]=\left[\begin{array}{ccc}
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & e^{x} & 0\\
 | ||
| 0 & 0 & 1/e^{x}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section
 | ||
| 2D Homographies
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| When viewed as operations on images, represented by 2D projective space
 | ||
|  
 | ||
| \begin_inset Formula $\mathcal{P}^{3}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , 3D rotations are a special case of 2D homographies.
 | ||
|  These are now treated, loosely based on the exposition in 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| key "Mei06iros,Mei08tro"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Basics
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| The Lie group 
 | ||
| \begin_inset Formula $\SLthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  is a subgroup of the general linear group 
 | ||
| \begin_inset Formula $GL(3)$
 | ||
| \end_inset
 | ||
| 
 | ||
|  of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  invertible matrices with determinant 
 | ||
| \begin_inset Formula $1$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  The homographies generalize transformations of the 2D projective space,
 | ||
|  and 
 | ||
| \begin_inset Formula $\Afftwo\subset\SLthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| 
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| We can extend 
 | ||
| \begin_inset Formula $\afftwo$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to the Lie algebra 
 | ||
| \begin_inset Formula $\slthree$
 | ||
| \end_inset
 | ||
| 
 | ||
|  by adding two generators
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{7}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0\\
 | ||
| 1 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 1 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| obtaining the vector space of 
 | ||
| \begin_inset Formula $3\times3$
 | ||
| \end_inset
 | ||
| 
 | ||
|  incremental homographies 
 | ||
| \begin_inset Formula $\hhat$
 | ||
| \end_inset
 | ||
| 
 | ||
|  parameterized by 8 parameters 
 | ||
| \begin_inset Formula $\hh\in\mathbb{R}^{8}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , with the mapping 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| h\rightarrow\hhat\define\left[\begin{array}{ccc}
 | ||
| h_{5} & h_{4}-h_{3} & h_{1}\\
 | ||
| h_{4}+h_{3} & -h_{5}-h_{6} & h_{2}\\
 | ||
| h_{7} & h_{8} & h_{6}
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| Tensor Notation
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Itemize
 | ||
| A homography between 2D projective spaces 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
|  and 
 | ||
| \begin_inset Formula $B$
 | ||
| \end_inset
 | ||
| 
 | ||
|  can be written in tensor notation 
 | ||
| \begin_inset Formula $H_{A}^{B}$
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Itemize
 | ||
| Applying a homography is then a tensor contraction 
 | ||
| \begin_inset Formula $x^{B}=H_{A}^{B}x^{A}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , mapping points in 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
|  to points in 
 | ||
| \begin_inset Formula $B$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Note Note
 | ||
| status collapsed
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| The inverse of a homography can be found by contracting with two permutation
 | ||
|  tensors:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| H_{B}^{A}=H_{A_{1}}^{B_{1}}H_{A_{2}}^{B_{2}}\epsilon_{B_{1}B_{2}B}\epsilon^{A_{1}A_{2}A}
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Note Note
 | ||
| status collapsed
 | ||
| 
 | ||
| \begin_layout Subsection
 | ||
| The Adjoint Map
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Plain Layout
 | ||
| The adjoint can be done using tensor notation.
 | ||
|  Denoting an incremental homography in space 
 | ||
| \begin_inset Formula $A$
 | ||
| \end_inset
 | ||
| 
 | ||
|  as 
 | ||
| \begin_inset Formula $\hhat_{A_{1}}^{A_{2}}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , we have, for example for 
 | ||
| \begin_inset Formula $G_{1}$
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \begin{eqnarray*}
 | ||
| \hhat_{B_{1}}^{B_{2}}=\Ad{H_{A}^{B}}{\hhat_{A_{1}}^{A_{2}}} & = & H_{A_{2}}^{B_{2}}\hhat_{A_{1}}^{A_{2}}H_{B_{1}}^{A_{1}}\\
 | ||
|  & = & H_{A_{2}}^{B_{2}}\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{A_{1}A_{2}A_{3}}\\
 | ||
|  & = & H_{1}^{B_{2}}H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{3A_{2}A_{3}}
 | ||
| \end{eqnarray*}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| This does not seem to help.
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset Newpage pagebreak
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section*
 | ||
| Appendix: Proof of Property 
 | ||
| \begin_inset CommandInset ref
 | ||
| LatexCommand ref
 | ||
| reference "proof1"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| We can prove the following identity for rotation matrices 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
| ,
 | ||
| \begin_inset Formula 
 | ||
| \begin{eqnarray}
 | ||
| R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc}
 | ||
| a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\
 | ||
|  & = & R\left[\begin{array}{ccc}
 | ||
| \omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\
 | ||
|  & = & \left[\begin{array}{ccc}
 | ||
| a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\
 | ||
| a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\
 | ||
| a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})
 | ||
| \end{array}\right]\nonumber \\
 | ||
|  & = & \left[\begin{array}{ccc}
 | ||
| \omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\
 | ||
| \omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\
 | ||
| \omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})
 | ||
| \end{array}\right]\nonumber \\
 | ||
|  & = & \left[\begin{array}{ccc}
 | ||
| 0 & -\omega a_{3} & \omega a_{2}\\
 | ||
| \omega a_{3} & 0 & -\omega a_{1}\\
 | ||
| -\omega a_{2} & \omega a_{1} & 0
 | ||
| \end{array}\right]\nonumber \\
 | ||
|  & = & \Skew{R\omega}\label{proof1}
 | ||
| \end{eqnarray}
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| where 
 | ||
| \begin_inset Formula $a_{1}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , 
 | ||
| \begin_inset Formula $a_{2}$
 | ||
| \end_inset
 | ||
| 
 | ||
| , and 
 | ||
| \begin_inset Formula $a_{3}$
 | ||
| \end_inset
 | ||
| 
 | ||
|  are the 
 | ||
| \emph on
 | ||
| rows
 | ||
| \emph default
 | ||
|  of 
 | ||
| \begin_inset Formula $R$
 | ||
| \end_inset
 | ||
| 
 | ||
| .
 | ||
|  Above we made use of the orthogonality of rotation matrices and the triple
 | ||
|  product rule:
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| a(b\times c)=b(c\times a)=c(a\times b)
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| Similarly, without proof 
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| after "Lemma 2.3"
 | ||
| key "Murray94book"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| : 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| R(a\times b)=Ra\times Rb
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Section*
 | ||
| Appendix: Alternative Generators for 
 | ||
| \begin_inset Formula $\slthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset CommandInset citation
 | ||
| LatexCommand cite
 | ||
| key "Mei06iros"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
|  uses the following generators for 
 | ||
| \begin_inset Formula $\slthree$
 | ||
| \end_inset
 | ||
| 
 | ||
| :
 | ||
| \family roman
 | ||
| \series medium
 | ||
| \shape up
 | ||
| \size normal
 | ||
| \emph off
 | ||
| \bar no
 | ||
| \noun off
 | ||
| \color none
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{1}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 1\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
 | ||
| 0 & 1 & 0\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{4}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
 | ||
| 1 & 0 & 0\\
 | ||
| 0 & -1 & 0\\
 | ||
| 0 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & -1 & 0\\
 | ||
| 0 & 0 & 1
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \begin_inset Formula 
 | ||
| \[
 | ||
| G^{7}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0\\
 | ||
| 1 & 0 & 0
 | ||
| \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 0 & 0\\
 | ||
| 0 & 1 & 0
 | ||
| \end{array}\right]
 | ||
| \]
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \family default
 | ||
| \series default
 | ||
| \shape default
 | ||
| \size default
 | ||
| \emph default
 | ||
| \bar default
 | ||
| \noun default
 | ||
| \color inherit
 | ||
| We choose to use a different linear combination as the basis.
 | ||
| \end_layout
 | ||
| 
 | ||
| \begin_layout Standard
 | ||
| \begin_inset CommandInset bibtex
 | ||
| LatexCommand bibtex
 | ||
| bibfiles "../../../papers/refs"
 | ||
| options "plain"
 | ||
| 
 | ||
| \end_inset
 | ||
| 
 | ||
| 
 | ||
| \end_layout
 | ||
| 
 | ||
| \end_body
 | ||
| \end_document
 |