474 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			474 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * GenericGraph2D.cpp
 | |
|  *
 | |
|  *   Created on: Nov 23, 2010
 | |
|  *       Author: nikai
 | |
|  *  Description: generic graph types used in partitioning
 | |
|  */
 | |
| #include <iostream>
 | |
| #include <boost/make_shared.hpp>
 | |
| #include <boost/lexical_cast.hpp>
 | |
| 
 | |
| #include <gtsam/base/DSFVector.h>
 | |
| 
 | |
| #include "GenericGraph.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam { namespace partition {
 | |
| 
 | |
|   /**
 | |
|    * Note: Need to be able to handle a graph with factors that involve variables not in the given {keys}
 | |
|    */
 | |
|   list<vector<size_t> > findIslands(const GenericGraph2D& graph, const vector<size_t>& keys, WorkSpace& workspace,
 | |
|       const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark)
 | |
|   {
 | |
|     typedef pair<int, int> IntPair;
 | |
|     typedef list<sharedGenericFactor2D> FactorList;
 | |
|     typedef map<IntPair, FactorList::iterator> Connections;
 | |
| 
 | |
|     // create disjoin set forest
 | |
|     DSFVector dsf(workspace.dsf, keys);
 | |
| 
 | |
|     FactorList factors(graph.begin(), graph.end());
 | |
|     size_t nrFactors = factors.size();
 | |
|     FactorList::iterator itEnd;
 | |
|     workspace.prepareDictionary(keys);
 | |
|     while (nrFactors) {
 | |
|       Connections connections;
 | |
|       bool succeed = false;
 | |
|       itEnd = factors.end();
 | |
|       list<FactorList::iterator> toErase;
 | |
|       for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
 | |
| 
 | |
|         // remove invalid factors
 | |
|         GenericNode2D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
 | |
|         if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
 | |
|           toErase.push_back(itFactor);  nrFactors--; continue;
 | |
|         }
 | |
| 
 | |
|         size_t label1 = dsf.find(key1.index);
 | |
|         size_t label2 = dsf.find(key2.index);
 | |
|         if (label1 == label2) {  toErase.push_back(itFactor);  nrFactors--; continue; }
 | |
| 
 | |
|         // merge two trees if the connection is strong enough, otherwise cache it
 | |
|         // an odometry factor always merges two islands
 | |
|         if (key1.type == NODE_POSE_2D && key2.type  == NODE_POSE_2D) {
 | |
|           toErase.push_back(itFactor); nrFactors--;
 | |
|           dsf.merge(label1, label2);
 | |
|           succeed = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // single landmark island only need one measurement
 | |
|         if ((dsf.isSingleton(label1)==1 && key1.type == NODE_LANDMARK_2D) ||
 | |
|             (dsf.isSingleton(label2)==1 && key2.type == NODE_LANDMARK_2D)) {
 | |
|           toErase.push_back(itFactor); nrFactors--;
 | |
|           dsf.merge(label1, label2);
 | |
|           succeed = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // stack the current factor with the cached constraint
 | |
|         IntPair labels = (label1 < label2) ? make_pair(label1, label2) : make_pair(label2, label1);
 | |
|         Connections::iterator itCached = connections.find(labels);
 | |
|         if (itCached == connections.end()) {
 | |
|           connections.insert(make_pair(labels, itFactor));
 | |
|           continue;
 | |
|         } else {
 | |
|           GenericNode2D key21 = (*itCached->second)->key1, key22 = (*itCached->second)->key2;
 | |
|           // if observe the same landmark, we can not merge, abandon the current factor
 | |
|           if ((key1.index == key21.index && key1.type == NODE_LANDMARK_2D) ||
 | |
|               (key1.index == key22.index && key1.type == NODE_LANDMARK_2D) ||
 | |
|               (key2.index == key21.index && key2.type == NODE_LANDMARK_2D) ||
 | |
|               (key2.index == key22.index && key2.type == NODE_LANDMARK_2D)) {
 | |
|             toErase.push_back(itFactor); nrFactors--;
 | |
|             continue;
 | |
|           } else {
 | |
|             toErase.push_back(itFactor); nrFactors--;
 | |
|             toErase.push_back(itCached->second); nrFactors--;
 | |
|             dsf.merge(label1, label2);
 | |
|             connections.erase(itCached);
 | |
|             succeed = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // erase unused factors
 | |
|       for(const FactorList::iterator& it: toErase)
 | |
|         factors.erase(it);
 | |
| 
 | |
|       if (!succeed) break;
 | |
|     }
 | |
| 
 | |
|     list<vector<size_t> > islands;
 | |
|     map<size_t, vector<size_t> > arrays = dsf.arrays();
 | |
|     for(const auto& kv : arrays)
 | |
|       islands.push_back(kv.second);
 | |
|     return islands;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   void print(const GenericGraph2D& graph, const std::string name) {
 | |
|     cout << name << endl;
 | |
|     for(const sharedGenericFactor2D& factor_: graph)
 | |
|       cout << factor_->key1.index << " " << factor_->key2.index << endl;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   void print(const GenericGraph3D& graph, const std::string name) {
 | |
|     cout << name << endl;
 | |
|     for(const sharedGenericFactor3D& factor_: graph)
 | |
|       cout << factor_->key1.index << " " << factor_->key2.index << " (" <<
 | |
|       factor_->key1.type << ", " << factor_->key2.type <<")" << endl;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // create disjoin set forest
 | |
|   DSFVector createDSF(const GenericGraph3D& graph, const vector<size_t>& keys, const WorkSpace& workspace) {
 | |
|     DSFVector dsf(workspace.dsf, keys);
 | |
|     typedef list<sharedGenericFactor3D> FactorList;
 | |
| 
 | |
|     FactorList factors(graph.begin(), graph.end());
 | |
|     size_t nrFactors = factors.size();
 | |
|     FactorList::iterator itEnd;
 | |
|     while (nrFactors) {
 | |
| 
 | |
|       bool succeed = false;
 | |
|       itEnd = factors.end();
 | |
|       list<FactorList::iterator> toErase;
 | |
|       for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
 | |
| 
 | |
|         // remove invalid factors
 | |
|         if (graph.size() == 178765) cout << "kai21" <<  endl;
 | |
|         GenericNode3D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
 | |
|         if (graph.size() == 178765) cout << "kai21: " << key1.index << " " << key2.index << endl;
 | |
|         if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
 | |
|           toErase.push_back(itFactor);  nrFactors--; continue;
 | |
|         }
 | |
| 
 | |
|         if (graph.size() == 178765) cout << "kai22" << endl;
 | |
|         size_t label1 = dsf.find(key1.index);
 | |
|         size_t label2 = dsf.find(key2.index);
 | |
|         if (label1 == label2) {  toErase.push_back(itFactor);  nrFactors--; continue; }
 | |
| 
 | |
|         if (graph.size() == 178765) cout << "kai23" << endl;
 | |
|         // merge two trees if the connection is strong enough, otherwise cache it
 | |
|         // an odometry factor always merges two islands
 | |
|         if ((key1.type == NODE_POSE_3D && key2.type  == NODE_LANDMARK_3D) ||
 | |
|             (key1.type == NODE_POSE_3D && key2.type  == NODE_POSE_3D)) {
 | |
|           toErase.push_back(itFactor); nrFactors--;
 | |
|           dsf.merge(label1, label2);
 | |
|           succeed = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (graph.size() == 178765) cout << "kai24" << endl;
 | |
| 
 | |
| 
 | |
|       }
 | |
| 
 | |
|       // erase unused factors
 | |
|       for(const FactorList::iterator& it: toErase)
 | |
|       factors.erase(it);
 | |
| 
 | |
|       if (!succeed) break;
 | |
|     }
 | |
|     return dsf;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // first check the type of the key (pose or landmark), and then check whether it is singular
 | |
|   inline bool isSingular(const set<size_t>& singularCameras, const set<size_t>& singularLandmarks, const GenericNode3D& node) {
 | |
|     switch(node.type) {
 | |
|     case NODE_POSE_3D:
 | |
|       return singularCameras.find(node.index) != singularCameras.end(); break;
 | |
|     case NODE_LANDMARK_3D:
 | |
|       return singularLandmarks.find(node.index) != singularLandmarks.end(); break;
 | |
|     default:
 | |
|       throw runtime_error("unrecognized key type!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   void findSingularCamerasLandmarks(const GenericGraph3D& graph, const WorkSpace& workspace,
 | |
|       const vector<bool>& isCamera, const vector<bool>& isLandmark,
 | |
|       set<size_t>& singularCameras, set<size_t>& singularLandmarks,  vector<int>& nrConstraints,
 | |
|       bool& foundSingularCamera, bool& foundSingularLandmark,
 | |
|       const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) {
 | |
| 
 | |
|     // compute the constraint number per camera
 | |
|     std::fill(nrConstraints.begin(),  nrConstraints.end(),    0);
 | |
|     for(const sharedGenericFactor3D& factor_: graph) {
 | |
|       const int& key1 = factor_->key1.index;
 | |
|       const int& key2 = factor_->key2.index;
 | |
|       if (workspace.dictionary[key1] != -1 &&  workspace.dictionary[key2] != -1 &&
 | |
|           !isSingular(singularCameras, singularLandmarks, factor_->key1) &&
 | |
|           !isSingular(singularCameras, singularLandmarks, factor_->key2)) {
 | |
|         nrConstraints[key1]++;
 | |
|         nrConstraints[key2]++;
 | |
| 
 | |
|         // a single pose constraint is sufficient for stereo, so we add 2 to the counter
 | |
|         // for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
 | |
|         if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
 | |
|           nrConstraints[key1]+=2;
 | |
|           nrConstraints[key2]+=2;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // find singular cameras and landmarks
 | |
|     foundSingularCamera = false;
 | |
|     foundSingularLandmark = false;
 | |
|     for (size_t i=0; i<nrConstraints.size(); i++) {
 | |
|       if (isCamera[i] && nrConstraints[i] < minNrConstraintsPerCamera &&
 | |
|           singularCameras.find(i) == singularCameras.end()) {
 | |
|         singularCameras.insert(i);
 | |
|         foundSingularCamera = true;
 | |
|       }
 | |
|       if (isLandmark[i] && nrConstraints[i] < minNrConstraintsPerLandmark &&
 | |
|           singularLandmarks.find(i) == singularLandmarks.end()) {
 | |
|         singularLandmarks.insert(i);
 | |
|         foundSingularLandmark = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   list<vector<size_t> > findIslands(const GenericGraph3D& graph, const vector<size_t>& keys, WorkSpace& workspace,
 | |
|       const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
 | |
| 
 | |
|     // create disjoint set forest
 | |
|     workspace.prepareDictionary(keys);
 | |
|     DSFVector dsf = createDSF(graph, keys, workspace);
 | |
| 
 | |
|     const bool verbose = false;
 | |
|     bool foundSingularCamera = true;
 | |
|     bool foundSingularLandmark = true;
 | |
| 
 | |
|     list<vector<size_t> > islands;
 | |
|     set<size_t> singularCameras, singularLandmarks;
 | |
|     vector<bool> isCamera(workspace.dictionary.size(), false);
 | |
|     vector<bool> isLandmark(workspace.dictionary.size(), false);
 | |
| 
 | |
|     // check the constraint number of every variable
 | |
|     // find the camera and landmark keys
 | |
|     for(const sharedGenericFactor3D& factor_: graph) {
 | |
|       //assert(factor_->key2.type == NODE_LANDMARK_3D); // only VisualSLAM should come here, not StereoSLAM
 | |
|       if (workspace.dictionary[factor_->key1.index] != -1) {
 | |
|         if (factor_->key1.type == NODE_POSE_3D)
 | |
|           isCamera[factor_->key1.index] = true;
 | |
|         else
 | |
|           isLandmark[factor_->key1.index] = true;
 | |
|       }
 | |
|             if (workspace.dictionary[factor_->key2.index] != -1) {
 | |
|         if (factor_->key2.type == NODE_POSE_3D)
 | |
|           isCamera[factor_->key2.index] = true;
 | |
|         else
 | |
|           isLandmark[factor_->key2.index] = true;
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     vector<int> nrConstraints(workspace.dictionary.size(), 0);
 | |
|     // iterate until all singular variables have been removed. Removing a singular variable
 | |
|     // can cause another to become singular, so this will probably run several times
 | |
|     while (foundSingularCamera || foundSingularLandmark) {
 | |
|       findSingularCamerasLandmarks(graph, workspace, isCamera, isLandmark,      // input
 | |
|           singularCameras, singularLandmarks, nrConstraints,                    // output
 | |
|           foundSingularCamera, foundSingularLandmark,                           // output
 | |
|           minNrConstraintsPerCamera,  minNrConstraintsPerLandmark);             // input
 | |
|     }
 | |
| 
 | |
|     // add singular variables directly as islands
 | |
|     if (!singularCameras.empty()) {
 | |
|       if (verbose) cout << "singular cameras:";
 | |
|       for(const size_t i: singularCameras) {
 | |
|         islands.push_back(vector<size_t>(1, i)); // <---------------------------
 | |
|         if (verbose) cout << i << " ";
 | |
|       }
 | |
|       if (verbose) cout << endl;
 | |
|     }
 | |
|     if (!singularLandmarks.empty()) {
 | |
|       if (verbose) cout << "singular landmarks:";
 | |
|       for(const size_t i: singularLandmarks) {
 | |
|         islands.push_back(vector<size_t>(1, i)); // <---------------------------
 | |
|         if (verbose) cout << i << " ";
 | |
|       }
 | |
|       if (verbose) cout << endl;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // regenerating islands
 | |
|     map<size_t, vector<size_t> > labelIslands = dsf.arrays();
 | |
|     size_t label; vector<size_t> island;
 | |
|     for(const auto& li: labelIslands) {
 | |
|       tie(label, island) = li;
 | |
|       vector<size_t> filteredIsland; // remove singular cameras from array
 | |
|       filteredIsland.reserve(island.size());
 | |
|       for(const size_t key: island) {
 | |
|         if ((isCamera[key]   && singularCameras.find(key) == singularCameras.end()) ||        // not singular
 | |
|             (isLandmark[key] && singularLandmarks.find(key) == singularLandmarks.end()) ||    // not singular
 | |
|             (!isCamera[key] && !isLandmark[key])) {   // the key is not involved in any factor, so the type is undertermined
 | |
|           filteredIsland.push_back(key);
 | |
|         }
 | |
|       }
 | |
|       islands.push_back(filteredIsland);
 | |
|     }
 | |
| 
 | |
|     // sanity check
 | |
|     size_t nrKeys = 0;
 | |
|     for(const vector<size_t>& island: islands)
 | |
|       nrKeys += island.size();
 | |
|     if (nrKeys != keys.size())  {
 | |
|       cout << nrKeys << " vs " << keys.size() << endl;
 | |
|       throw runtime_error("findIslands: the number of keys is inconsistent!");
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (verbose) cout << "found " << islands.size() << " islands!" << endl;
 | |
|     return islands;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // return the number of intersection between two **sorted** landmark vectors
 | |
|   inline int getNrCommonLandmarks(const vector<size_t>& landmarks1, const vector<size_t>& landmarks2){
 | |
|     size_t i1 = 0, i2 = 0;
 | |
|     int nrCommonLandmarks = 0;
 | |
|     while (i1 < landmarks1.size() && i2 < landmarks2.size()) {
 | |
|       if (landmarks1[i1] < landmarks2[i2])
 | |
|         i1 ++;
 | |
|       else if (landmarks1[i1] > landmarks2[i2])
 | |
|         i2 ++;
 | |
|       else {
 | |
|         i1++; i2++;
 | |
|         nrCommonLandmarks ++;
 | |
|       }
 | |
|     }
 | |
|     return nrCommonLandmarks;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys,  const std::vector<size_t>& landmarkKeys,
 | |
|       const std::vector<int>& dictionary,  GenericGraph3D& reducedGraph) {
 | |
| 
 | |
|     typedef size_t LandmarkKey;
 | |
|     // get a mapping from each landmark to its connected cameras
 | |
|     vector<vector<LandmarkKey> > cameraToLandmarks(dictionary.size());
 | |
|     // for odometry xi-xj where i<j, we always store cameraToCamera[i] = j, otherwise equal to -1 if no odometry
 | |
|     vector<int> cameraToCamera(dictionary.size(), -1);
 | |
|     size_t key_i, key_j;
 | |
|     for(const sharedGenericFactor3D& factor_: graph) {
 | |
|       if (factor_->key1.type == NODE_POSE_3D) {
 | |
|         if (factor_->key2.type == NODE_LANDMARK_3D) {// projection factor
 | |
|           cameraToLandmarks[factor_->key1.index].push_back(factor_->key2.index);
 | |
|         }
 | |
|         else { // odometry factor
 | |
|           if (factor_->key1.index < factor_->key2.index) {
 | |
|             key_i = factor_->key1.index;
 | |
|             key_j = factor_->key2.index;
 | |
|           } else {
 | |
|             key_i = factor_->key2.index;
 | |
|             key_j = factor_->key1.index;
 | |
|           }
 | |
|           cameraToCamera[key_i] = key_j;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // sort the landmark keys for the late getNrCommonLandmarks call
 | |
|     for(vector<LandmarkKey> &landmarks: cameraToLandmarks){
 | |
|       if (!landmarks.empty())
 | |
|         std::sort(landmarks.begin(), landmarks.end());
 | |
|     }
 | |
| 
 | |
|     // generate the reduced graph
 | |
|     reducedGraph.clear();
 | |
|     int factorIndex = 0;
 | |
|     int camera1, camera2, nrTotalConstraints;
 | |
|     bool hasOdometry;
 | |
|     for (size_t i1=0; i1<cameraKeys.size()-1; ++i1) {
 | |
|       for (size_t i2=i1+1; i2<cameraKeys.size(); ++i2) {
 | |
|         camera1 = cameraKeys[i1];
 | |
|         camera2 = cameraKeys[i2];
 | |
|         int nrCommonLandmarks = getNrCommonLandmarks(cameraToLandmarks[camera1], cameraToLandmarks[camera2]);
 | |
|         hasOdometry =  cameraToCamera[camera1] == camera2;
 | |
|         if (nrCommonLandmarks > 0 || hasOdometry) {
 | |
|           nrTotalConstraints = 2 * nrCommonLandmarks + (hasOdometry ? 6 : 0);
 | |
|           reducedGraph.push_back(boost::make_shared<GenericFactor3D>(camera1, camera2,
 | |
|               factorIndex++, NODE_POSE_3D, NODE_POSE_3D, nrTotalConstraints));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
 | |
|       WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
 | |
|     workspace.prepareDictionary(frontals);
 | |
|     vector<size_t> nrConstraints(workspace.dictionary.size(), 0);
 | |
| 
 | |
|     // summarize the constraint number
 | |
|     const vector<int>& dictionary = workspace.dictionary;
 | |
|     vector<bool> isValidCamera(workspace.dictionary.size(), false);
 | |
|     vector<bool> isValidLandmark(workspace.dictionary.size(), false);
 | |
|     for(const sharedGenericFactor3D& factor_: graph) {
 | |
|       assert(factor_->key1.type == NODE_POSE_3D);
 | |
|       //assert(factor_->key2.type == NODE_LANDMARK_3D);
 | |
|       const size_t& key1 = factor_->key1.index;
 | |
|       const size_t& key2 = factor_->key2.index;
 | |
|       if (dictionary[key1] == -1 || dictionary[key2] == -1)
 | |
|         continue;
 | |
| 
 | |
|       isValidCamera[key1] = true;
 | |
|       if(factor_->key2.type == NODE_LANDMARK_3D)
 | |
|         isValidLandmark[key2] = true;
 | |
|       else
 | |
|         isValidCamera[key2] = true;
 | |
| 
 | |
|       nrConstraints[key1]++;
 | |
|       nrConstraints[key2]++;
 | |
| 
 | |
|       // a single pose constraint is sufficient for stereo, so we add 2 to the counter
 | |
|       // for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
 | |
|       if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
 | |
|         nrConstraints[key1]+=2;
 | |
|         nrConstraints[key2]+=2;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // find the minimum constraint for cameras and landmarks
 | |
|     size_t minFoundConstraintsPerCamera = 10000;
 | |
|     size_t minFoundConstraintsPerLandmark = 10000;
 | |
| 
 | |
|     for (size_t i=0; i<isValidCamera.size(); i++) {
 | |
|       if (isValidCamera[i]) {
 | |
|         minFoundConstraintsPerCamera   = std::min(nrConstraints[i], minFoundConstraintsPerCamera);
 | |
|         if (nrConstraints[i] < minNrConstraintsPerCamera)
 | |
|               cout << "!!!!!!!!!!!!!!!!!!! camera with " << nrConstraints[i] << " constraint: " << i << endl;
 | |
|       }
 | |
| 
 | |
|     }
 | |
|     for (size_t j=0; j<isValidLandmark.size(); j++) {
 | |
|       if (isValidLandmark[j]) {
 | |
|         minFoundConstraintsPerLandmark = std::min(nrConstraints[j], minFoundConstraintsPerLandmark);
 | |
|         if (nrConstraints[j] < minNrConstraintsPerLandmark)
 | |
|           cout << "!!!!!!!!!!!!!!!!!!! landmark with " << nrConstraints[j] << " constraint: " << j << endl;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // debug info
 | |
|     for(const size_t key: frontals) {
 | |
|       if (isValidCamera[key] && nrConstraints[key] < minNrConstraintsPerCamera)
 | |
|         cout << "singular camera:" << key << " with " << nrConstraints[key] << " constraints" << endl;
 | |
|     }
 | |
| 
 | |
|      if (minFoundConstraintsPerCamera < minNrConstraintsPerCamera)
 | |
|       throw runtime_error("checkSingularity:minConstraintsPerCamera < " + boost::lexical_cast<string>(minFoundConstraintsPerCamera));
 | |
|     if (minFoundConstraintsPerLandmark < minNrConstraintsPerLandmark)
 | |
|       throw runtime_error("checkSingularity:minConstraintsPerLandmark < " + boost::lexical_cast<string>(minFoundConstraintsPerLandmark));
 | |
|   }
 | |
| 
 | |
| }} // namespace
 |