273 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file  CombinedImuFactor.cpp
 | 
						|
 *  @author Luca Carlone
 | 
						|
 *  @author Stephen Williams
 | 
						|
 *  @author Richard Roberts
 | 
						|
 *  @author Vadim Indelman
 | 
						|
 *  @author David Jensen
 | 
						|
 *  @author Frank Dellaert
 | 
						|
 **/
 | 
						|
 | 
						|
#include <gtsam/navigation/CombinedImuFactor.h>
 | 
						|
 | 
						|
/* External or standard includes */
 | 
						|
#include <ostream>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
using namespace std;
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// Inner class CombinedPreintegratedMeasurements
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
CombinedImuFactor::CombinedPreintegratedMeasurements::CombinedPreintegratedMeasurements(
 | 
						|
    const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
 | 
						|
    const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
 | 
						|
    const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
 | 
						|
    const Matrix& biasAccOmegaInit, const bool use2ndOrderIntegration) :
 | 
						|
        PreintegrationBase(bias, use2ndOrderIntegration)
 | 
						|
{
 | 
						|
  measurementCovariance_.setZero();
 | 
						|
  measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
 | 
						|
  measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
 | 
						|
  measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
 | 
						|
  measurementCovariance_.block<3,3>(9,9) = biasAccCovariance;
 | 
						|
  measurementCovariance_.block<3,3>(12,12) = biasOmegaCovariance;
 | 
						|
  measurementCovariance_.block<6,6>(15,15) = biasAccOmegaInit;
 | 
						|
  preintMeasCov_.setZero();
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
void CombinedImuFactor::CombinedPreintegratedMeasurements::print(const string& s) const{
 | 
						|
  PreintegrationBase::print(s);
 | 
						|
  cout << "  measurementCovariance [ " << measurementCovariance_ << " ]" << endl;
 | 
						|
  cout << "  preintMeasCov [ " << preintMeasCov_ << " ]" << endl;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
bool CombinedImuFactor::CombinedPreintegratedMeasurements::equals(const CombinedPreintegratedMeasurements& expected, double tol) const{
 | 
						|
  return equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
 | 
						|
      && equal_with_abs_tol(preintMeasCov_, expected.preintMeasCov_, tol)
 | 
						|
      && PreintegrationBase::equals(expected, tol);
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
void CombinedImuFactor::CombinedPreintegratedMeasurements::resetIntegration(){
 | 
						|
  PreintegrationBase::resetIntegration();
 | 
						|
  preintMeasCov_.setZero();
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
 | 
						|
    const Vector3& measuredAcc, const Vector3& measuredOmega,
 | 
						|
    double deltaT, boost::optional<const Pose3&> body_P_sensor) {
 | 
						|
 | 
						|
  // NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
 | 
						|
  // (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
 | 
						|
 | 
						|
  Vector3 correctedAcc, correctedOmega;
 | 
						|
  correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
 | 
						|
 | 
						|
  const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
 | 
						|
  const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
 | 
						|
  const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
 | 
						|
 | 
						|
  // Update Jacobians
 | 
						|
  /* ----------------------------------------------------------------------------------------------------------------------- */
 | 
						|
  updatePreintegratedJacobians(correctedAcc, Jr_theta_incr, Rincr, deltaT);
 | 
						|
 | 
						|
  // Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
 | 
						|
  // can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
 | 
						|
  // consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
 | 
						|
  /* ----------------------------------------------------------------------------------------------------------------------- */
 | 
						|
  const Vector3 theta_i = thetaRij(); // super-expensive parametrization of so(3)
 | 
						|
  const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
 | 
						|
 | 
						|
  // Update preintegrated measurements. TODO Frank moved from end of this function !!!
 | 
						|
  updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT);
 | 
						|
 | 
						|
  const Vector3 theta_j = thetaRij(); // super-expensive parametrization of so(3)
 | 
						|
  const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
 | 
						|
 | 
						|
  // Single Jacobians to propagate covariance
 | 
						|
  Matrix3 H_pos_pos    = I_3x3;
 | 
						|
  Matrix3 H_pos_vel    = I_3x3 * deltaT;
 | 
						|
  Matrix3 H_pos_angles = Z_3x3;
 | 
						|
 | 
						|
  Matrix3 H_vel_pos    = Z_3x3;
 | 
						|
  Matrix3 H_vel_vel    = I_3x3;
 | 
						|
  Matrix3 H_vel_angles = - deltaRij() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
 | 
						|
  // analytic expression corresponding to the following numerical derivative
 | 
						|
  // Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
 | 
						|
  Matrix3 H_vel_biasacc = - deltaRij() * deltaT;
 | 
						|
 | 
						|
  Matrix3 H_angles_pos   = Z_3x3;
 | 
						|
  Matrix3 H_angles_vel    = Z_3x3;
 | 
						|
  Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
 | 
						|
  Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
 | 
						|
  // analytic expression corresponding to the following numerical derivative
 | 
						|
  // Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
 | 
						|
 | 
						|
  // overall Jacobian wrt preintegrated measurements (df/dx)
 | 
						|
  Matrix F(15,15);
 | 
						|
  F << H_pos_pos,    H_pos_vel,     H_pos_angles,          Z_3x3,                     Z_3x3,
 | 
						|
      H_vel_pos,     H_vel_vel,     H_vel_angles,      H_vel_biasacc,              Z_3x3,
 | 
						|
      H_angles_pos,  H_angles_vel,  H_angles_angles,   Z_3x3,                         H_angles_biasomega,
 | 
						|
      Z_3x3,         Z_3x3,         Z_3x3,             I_3x3,                         Z_3x3,
 | 
						|
      Z_3x3,         Z_3x3,         Z_3x3,             Z_3x3,                         I_3x3;
 | 
						|
 | 
						|
  // first order uncertainty propagation
 | 
						|
  // Optimized matrix multiplication   (1/deltaT) * G * measurementCovariance * G.transpose()
 | 
						|
 | 
						|
  Matrix G_measCov_Gt = Matrix::Zero(15,15);
 | 
						|
  // BLOCK DIAGONAL TERMS
 | 
						|
  G_measCov_Gt.block<3,3>(0,0) = deltaT * measurementCovariance_.block<3,3>(0,0);
 | 
						|
 | 
						|
  G_measCov_Gt.block<3,3>(3,3) = (1/deltaT) * (H_vel_biasacc)  *
 | 
						|
      (measurementCovariance_.block<3,3>(3,3)  +  measurementCovariance_.block<3,3>(15,15) ) *
 | 
						|
      (H_vel_biasacc.transpose());
 | 
						|
 | 
						|
  G_measCov_Gt.block<3,3>(6,6) = (1/deltaT) *  (H_angles_biasomega) *
 | 
						|
      (measurementCovariance_.block<3,3>(6,6)  +  measurementCovariance_.block<3,3>(18,18) ) *
 | 
						|
      (H_angles_biasomega.transpose());
 | 
						|
 | 
						|
  G_measCov_Gt.block<3,3>(9,9) = deltaT * measurementCovariance_.block<3,3>(9,9);
 | 
						|
 | 
						|
  G_measCov_Gt.block<3,3>(12,12) = deltaT * measurementCovariance_.block<3,3>(12,12);
 | 
						|
 | 
						|
  // NEW OFF BLOCK DIAGONAL TERMS
 | 
						|
  Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block<3,3>(18,15) *  H_angles_biasomega.transpose();
 | 
						|
  G_measCov_Gt.block<3,3>(3,6) = block23;
 | 
						|
  G_measCov_Gt.block<3,3>(6,3) = block23.transpose();
 | 
						|
 | 
						|
  preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// CombinedImuFactor methods
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
CombinedImuFactor::CombinedImuFactor() :
 | 
						|
    ImuFactorBase(), _PIM_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Matrix::Zero(6,6)) {}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
CombinedImuFactor::CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
 | 
						|
    const CombinedPreintegratedMeasurements& preintegratedMeasurements,
 | 
						|
    const Vector3& gravity, const Vector3& omegaCoriolis,
 | 
						|
    boost::optional<const Pose3&> body_P_sensor, const bool use2ndOrderCoriolis) :
 | 
						|
          Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.preintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
 | 
						|
          ImuFactorBase(gravity, omegaCoriolis, body_P_sensor, use2ndOrderCoriolis),
 | 
						|
          _PIM_(preintegratedMeasurements) {}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
gtsam::NonlinearFactor::shared_ptr CombinedImuFactor::clone() const {
 | 
						|
  return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
      gtsam::NonlinearFactor::shared_ptr(new This(*this)));
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
void CombinedImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
 | 
						|
  cout << s << "CombinedImuFactor("
 | 
						|
      << keyFormatter(this->key1()) << ","
 | 
						|
      << keyFormatter(this->key2()) << ","
 | 
						|
      << keyFormatter(this->key3()) << ","
 | 
						|
      << keyFormatter(this->key4()) << ","
 | 
						|
      << keyFormatter(this->key5()) << ","
 | 
						|
      << keyFormatter(this->key6()) << ")\n";
 | 
						|
  ImuFactorBase::print("");
 | 
						|
  _PIM_.print("  preintegrated measurements:");
 | 
						|
  this->noiseModel_->print("  noise model: ");
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
bool CombinedImuFactor::equals(const NonlinearFactor& expected, double tol) const {
 | 
						|
  const This *e =  dynamic_cast<const This*> (&expected);
 | 
						|
  return e != NULL && Base::equals(*e, tol)
 | 
						|
  && _PIM_.equals(e->_PIM_, tol)
 | 
						|
  && ImuFactorBase::equals(*e, tol);
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
Vector CombinedImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
 | 
						|
    const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
 | 
						|
    boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
 | 
						|
    boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
 | 
						|
    boost::optional<Matrix&> H5, boost::optional<Matrix&> H6) const {
 | 
						|
 | 
						|
  // if we need the jacobians
 | 
						|
  if(H1 || H2 || H3 || H4 || H5 || H6){
 | 
						|
    Matrix H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR, Hbias_i, Hbias_j; // pvR = mnemonic: position (p), velocity (v), rotation (R)
 | 
						|
 | 
						|
    // error wrt preintegrated measurements
 | 
						|
    Vector r_pvR(9);
 | 
						|
    r_pvR = _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
 | 
						|
        gravity_, omegaCoriolis_, use2ndOrderCoriolis_, //
 | 
						|
        H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR);
 | 
						|
 | 
						|
    // error wrt bias evolution model (random walk)
 | 
						|
    Vector6 fbias = bias_j.between(bias_i, Hbias_j, Hbias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
 | 
						|
 | 
						|
    if(H1) {
 | 
						|
      H1->resize(15,6);
 | 
						|
      H1->block<9,6>(0,0) = H1_pvR;
 | 
						|
      // adding: [dBiasAcc/dPi ; dBiasOmega/dPi]
 | 
						|
      H1->block<6,6>(0,9) = Matrix::Zero(6,6);
 | 
						|
    }
 | 
						|
    if(H2) {
 | 
						|
      H2->resize(15,3);
 | 
						|
      H2->block<9,3>(0,0) = H2_pvR;
 | 
						|
      // adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
 | 
						|
      H2->block<6,3>(0,9) = Matrix::Zero(6,3);
 | 
						|
    }
 | 
						|
    if(H3) {
 | 
						|
      H3->resize(15,6);
 | 
						|
      H3->block<9,6>(0,0) = H3_pvR;
 | 
						|
      // adding: [dBiasAcc/dPj ; dBiasOmega/dPj]
 | 
						|
      H3->block<6,6>(0,9) = Matrix::Zero(6,6);
 | 
						|
    }
 | 
						|
    if(H4) {
 | 
						|
      H4->resize(15,3);
 | 
						|
      H4->block<9,3>(0,0) = H4_pvR;
 | 
						|
      // adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
 | 
						|
      H4->block<6,3>(0,9) = Matrix::Zero(6,3);
 | 
						|
    }
 | 
						|
    if(H5) {
 | 
						|
      H5->resize(15,6);
 | 
						|
      H5->block<9,6>(0,0) = H5_pvR;
 | 
						|
      // adding: [dBiasAcc/dBias_i ; dBiasOmega/dBias_i]
 | 
						|
      H5->block<6,6>(0,9) = Hbias_i;
 | 
						|
    }
 | 
						|
    if(H6) {
 | 
						|
      H6->resize(15,6);
 | 
						|
      H6->block<9,6>(0,0) = Matrix::Zero(6,6);
 | 
						|
      // adding: [dBiasAcc/dBias_j ; dBiasOmega/dBias_j]
 | 
						|
      H6->block<6,6>(0,9) = Hbias_j;
 | 
						|
    }
 | 
						|
    Vector r(15); r << r_pvR, fbias; // vector of size 15
 | 
						|
    return r;
 | 
						|
  }
 | 
						|
  // else, only compute the error vector:
 | 
						|
  // error wrt preintegrated measurements
 | 
						|
  Vector r_pvR(9);
 | 
						|
  r_pvR = _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
 | 
						|
      gravity_, omegaCoriolis_, use2ndOrderCoriolis_, //
 | 
						|
      boost::none, boost::none, boost::none, boost::none, boost::none);
 | 
						|
  // error wrt bias evolution model (random walk)
 | 
						|
  Vector6 fbias = bias_j.between(bias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
 | 
						|
  // overall error
 | 
						|
  Vector r(15); r << r_pvR, fbias; // vector of size 15
 | 
						|
  return r;
 | 
						|
}
 | 
						|
 | 
						|
} /// namespace gtsam
 |