137 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    timeGaussianFactor.cpp
 | |
|  * @brief   time JacobianFactor.eliminate
 | |
|  * @author  Alireza Fathi
 | |
|  */
 | |
| 
 | |
| #include <time.h>
 | |
| 
 | |
| /*STL/C++*/
 | |
| #include <iostream>
 | |
| using namespace std;
 | |
| 
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/assign/list_of.hpp>
 | |
| 
 | |
| #include <gtsam/base/Matrix.h>
 | |
| #include <gtsam/linear/JacobianFactor.h>
 | |
| #include <gtsam/linear/JacobianFactor.h>
 | |
| #include <gtsam/linear/GaussianConditional.h>
 | |
| #include <gtsam/linear/NoiseModel.h>
 | |
| 
 | |
| using namespace gtsam;
 | |
| using namespace boost::assign;
 | |
| 
 | |
| static const Key _x1_=1, _x2_=2, _l1_=3;
 | |
| 
 | |
| /*
 | |
|  * Alex's Machine
 | |
|  * Results for Eliminate:
 | |
|  * Initial (1891): 17.91 sec, 55834.7 calls/sec
 | |
|  * NoiseQR       : 11.69 sec
 | |
|  *
 | |
|  * Results for matrix_augmented:
 | |
|  * Initial (1891)       :  0.85 sec, 1.17647e+06 calls/sec
 | |
|  * int->size_t Version  :  8.45 sec (for n1 reps) with memcpy version of collect()
 | |
|  * w/ original collect():  8.73 sec (for n1 reps)
 | |
|  * b memcpy Version     :  8.64 sec (for n1 reps) with original version of collect()
 | |
|  * w/ memcpy collect()  :  8.40 sec (for n1 reps)
 | |
|  * Rev 2100             :  8.15 sec
 | |
|  */
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   // create a linear factor
 | |
|   Matrix Ax2 = (Matrix(8, 2) <<
 | |
|            // x2
 | |
|            -5., 0.,
 | |
|            +0.,-5.,
 | |
|            10., 0.,
 | |
|            +0.,10.,
 | |
|            -5., 0.,
 | |
|            +0.,-5.,
 | |
|            10., 0.,
 | |
|            +0.,10.
 | |
|            ).finished();
 | |
| 
 | |
|   Matrix Al1 = (Matrix(8, 10) <<
 | |
|            // l1
 | |
|            5., 0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0., 5.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0., 0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0., 0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            5., 0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0., 5.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0., 0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0., 0.,1.,2.,3.,4.,5.,6.,7.,8.
 | |
|            ).finished();
 | |
| 
 | |
|   Matrix Ax1 = (Matrix(8, 2) <<
 | |
|            // x1
 | |
|            0.00,  0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0.00,  0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            -10.,  0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0.00,-10.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0.00,  0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0.00,  0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            -10.,  0.,1.,2.,3.,4.,5.,6.,7.,8.,
 | |
|            0.00,-10.,1.,2.,3.,4.,5.,6.,7.,8.
 | |
|            ).finished();
 | |
| 
 | |
|   // and a RHS
 | |
|   Vector b2(8);
 | |
|   b2(0) = -1;
 | |
|   b2(1) = 1.5;
 | |
|   b2(2) = 2;
 | |
|   b2(3) = -1;
 | |
|   b2(4) = -1;
 | |
|   b2(5) = 1.5;
 | |
|   b2(6) = 2;
 | |
|   b2(7) = -1;
 | |
| 
 | |
|   // time eliminate
 | |
|   JacobianFactor combined(_x2_, Ax2,  _l1_, Al1, _x1_, Ax1, b2, noiseModel::Isotropic::Sigma(8,1));
 | |
|   long timeLog = clock();
 | |
|   int n = 1000000;
 | |
|   GaussianConditional::shared_ptr conditional;
 | |
|   JacobianFactor::shared_ptr factor;
 | |
| 
 | |
|   for(int i = 0; i < n; i++)
 | |
|     boost::tie(conditional, factor) =
 | |
|         JacobianFactor(combined).eliminate(Ordering(boost::assign::list_of(_x2_)));
 | |
| 
 | |
|   long timeLog2 = clock();
 | |
|   double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
 | |
|   cout << "Single Eliminate Timing:" << endl;
 | |
|   cout << seconds << " seconds" << endl;
 | |
|   cout << ((double)n/seconds) << " calls/second" << endl;
 | |
| 
 | |
|   // time matrix_augmented
 | |
| //  Ordering ordering;
 | |
| //  ordering += _x2_, _l1_, _x1_;
 | |
| //  size_t n1 = 10000000;
 | |
| //  timeLog = clock();
 | |
| //
 | |
| //  for(size_t i = 0; i < n1; i++)
 | |
| //    Matrix Ab = combined.matrix_augmented(ordering, true);
 | |
| //
 | |
| //  timeLog2 = clock();
 | |
| //  seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
 | |
| //  cout << "matrix_augmented Timing:" << endl;
 | |
| //  cout << seconds << " seconds" << endl;
 | |
| //  cout << ((double)n/seconds) << " calls/second" << endl;
 | |
| 
 | |
|   return 0;
 | |
| }
 |