775 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			775 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file testExpressionFactor.cpp
 | |
|  * @date September 18, 2014
 | |
|  * @author Frank Dellaert
 | |
|  * @author Paul Furgale
 | |
|  * @brief unit tests for Block Automatic Differentiation
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/nonlinear/ExpressionFactor.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/PriorFactor.h>
 | |
| #include <gtsam/nonlinear/expressionTesting.h>
 | |
| #include <gtsam/slam/GeneralSFMFactor.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam/slam/expressions.h>
 | |
| 
 | |
| #include <boost/assign/list_of.hpp>
 | |
| using boost::assign::list_of;
 | |
| using namespace std::placeholders;
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| Point2 measured(-17, 30);
 | |
| SharedNoiseModel model = noiseModel::Unit::Create(2);
 | |
| 
 | |
| // This deals with the overload problem and makes the expressions factor
 | |
| // understand that we work on Point3
 | |
| Point2 (*Project)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project;
 | |
| 
 | |
| namespace leaf {
 | |
| // Create some values
 | |
| struct MyValues: public Values {
 | |
|   MyValues() {
 | |
|     insert(2, Point2(3, 5));
 | |
|   }
 | |
| } values;
 | |
| 
 | |
| // Create leaf
 | |
| Point2_ p(2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Leaf
 | |
| TEST(ExpressionFactor, Leaf) {
 | |
|   using namespace leaf;
 | |
| 
 | |
|   // Create old-style factor to create expected value and derivatives.
 | |
|   PriorFactor<Point2> old(2, Point2(0, 0), model);
 | |
| 
 | |
|   // Create the equivalent factor with expression.
 | |
|   ExpressionFactor<Point2> f(model, Point2(0, 0), p);
 | |
| 
 | |
|   // Check values and derivatives.
 | |
|   EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
 | |
|   EXPECT_LONGS_EQUAL(2, f.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
 | |
|   EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test leaf expression with noise model of different variance.
 | |
| TEST(ExpressionFactor, Model) {
 | |
|   using namespace leaf;
 | |
| 
 | |
|   SharedNoiseModel model = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.01));
 | |
| 
 | |
|   // Create old-style factor to create expected value and derivatives.
 | |
|   PriorFactor<Point2> old(2, Point2(0, 0), model);
 | |
| 
 | |
|   // Create the equivalent factor with expression.
 | |
|   ExpressionFactor<Point2> f(model, Point2(0, 0), p);
 | |
| 
 | |
|   // Check values and derivatives.
 | |
|   EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
 | |
|   EXPECT_LONGS_EQUAL(2, f.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
 | |
|   EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9));
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-5, 1e-5); // another way
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test leaf expression with constrained noise model.
 | |
| TEST(ExpressionFactor, Constrained) {
 | |
|   using namespace leaf;
 | |
| 
 | |
|   SharedDiagonal model = noiseModel::Constrained::MixedSigmas(Vector2(0.2, 0));
 | |
| 
 | |
|   // Create old-style factor to create expected value and derivatives
 | |
|   PriorFactor<Point2> old(2, Point2(0, 0), model);
 | |
| 
 | |
|   // Concise version
 | |
|   ExpressionFactor<Point2> f(model, Point2(0, 0), p);
 | |
|   EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
 | |
|   EXPECT_LONGS_EQUAL(2, f.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
 | |
|   EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Unary(Leaf))
 | |
| TEST(ExpressionFactor, Unary) {
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(2, Point3(0, 0, 1));
 | |
| 
 | |
|   JacobianFactor expected( //
 | |
|       2, (Matrix(2, 3) << 1, 0, 0, 0, 1, 0).finished(), //
 | |
|       Vector2(-17, 30));
 | |
| 
 | |
|   // Create leaves
 | |
|   Point3_ p(2);
 | |
| 
 | |
|   // Concise version
 | |
|   ExpressionFactor<Point2> f(model, measured, project(p));
 | |
|   EXPECT_LONGS_EQUAL(2, f.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
 | |
|   boost::shared_ptr<JacobianFactor> jf = //
 | |
|       boost::dynamic_pointer_cast<JacobianFactor>(gf);
 | |
|   EXPECT(assert_equal(expected, *jf, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Unary(Leaf)) and Unary(Unary(Leaf)))
 | |
| // wide version (not handled in fixed-size pipeline)
 | |
| typedef Eigen::Matrix<double,9,3> Matrix93;
 | |
| Vector9 wide(const Point3& p, OptionalJacobian<9,3> H) {
 | |
|   Vector9 v;
 | |
|   v << p, p, p;
 | |
|   if (H) *H << I_3x3, I_3x3, I_3x3;
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| typedef Eigen::Matrix<double,9,9> Matrix9;
 | |
| Vector9 id9(const Vector9& v, OptionalJacobian<9,9> H) {
 | |
|   if (H) *H = Matrix9::Identity();
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| TEST(ExpressionFactor, Wide) {
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(2, Point3(0, 0, 1));
 | |
|   Point3_ point(2);
 | |
|   Vector9 measured;
 | |
|   measured.setZero();
 | |
|   Expression<Vector9> expression(wide,point);
 | |
|   SharedNoiseModel model = noiseModel::Unit::Create(9);
 | |
| 
 | |
|   ExpressionFactor<Vector9> f1(model, measured, expression);
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(f1, values, 1e-5, 1e-9);
 | |
| 
 | |
|   Expression<Vector9> expression2(id9,expression);
 | |
|   ExpressionFactor<Vector9> f2(model, measured, expression2);
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(f2, values, 1e-5, 1e-9);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| static Point2 myUncal(const Cal3_S2& K, const Point2& p,
 | |
|     OptionalJacobian<2,5> Dcal, OptionalJacobian<2,2> Dp) {
 | |
|   return K.uncalibrate(p, Dcal, Dp);
 | |
| }
 | |
| 
 | |
| // Binary(Leaf,Leaf)
 | |
| TEST(ExpressionFactor, Binary) {
 | |
| 
 | |
|   typedef internal::BinaryExpression<Point2, Cal3_S2, Point2> Binary;
 | |
| 
 | |
|   Cal3_S2_ K_(1);
 | |
|   Point2_ p_(2);
 | |
|   Binary binary(myUncal, K_, p_);
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Cal3_S2());
 | |
|   values.insert(2, Point2(0, 0));
 | |
| 
 | |
|   // Check size
 | |
|   size_t size = binary.traceSize();
 | |
|   // Use Variable Length Array, allocated on stack by gcc
 | |
|   // Note unclear for Clang: http://clang.llvm.org/compatibility.html#vla
 | |
|   internal::ExecutionTraceStorage traceStorage[size];
 | |
|   internal::ExecutionTrace<Point2> trace;
 | |
|   Point2 value = binary.traceExecution(values, trace, traceStorage);
 | |
|   EXPECT(assert_equal(Point2(0,0),value, 1e-9));
 | |
|   // trace.print();
 | |
| 
 | |
|   // Expected Jacobians
 | |
|   Matrix25 expected25;
 | |
|   expected25 << 0, 0, 0, 1, 0, 0, 0, 0, 0, 1;
 | |
|   Matrix2 expected22;
 | |
|   expected22 << 1, 0, 0, 1;
 | |
| 
 | |
|   // Check matrices
 | |
|   boost::optional<Binary::Record*> r = trace.record<Binary::Record>();
 | |
|   CHECK(r);
 | |
|   EXPECT(assert_equal(expected25, (Matrix ) (*r)->dTdA1, 1e-9));
 | |
|   EXPECT(assert_equal(expected22, (Matrix ) (*r)->dTdA2, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Unary(Binary(Leaf,Leaf))
 | |
| TEST(ExpressionFactor, Shallow) {
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Pose3());
 | |
|   values.insert(2, Point3(0, 0, 1));
 | |
| 
 | |
|   // Create old-style factor to create expected value and derivatives
 | |
|   GenericProjectionFactor<Pose3, Point3> old(measured, model, 1, 2,
 | |
|       boost::make_shared<Cal3_S2>());
 | |
|   double expected_error = old.error(values);
 | |
|   GaussianFactor::shared_ptr expected = old.linearize(values);
 | |
| 
 | |
|   // Create leaves
 | |
|   Pose3_ x_(1);
 | |
|   Point3_ p_(2);
 | |
| 
 | |
|   // Construct expression, concise version
 | |
|   Point2_ expression = project(transformTo(x_, p_));
 | |
| 
 | |
|   // Get and check keys and dims
 | |
|   KeyVector keys;
 | |
|   FastVector<int> dims;
 | |
|   boost::tie(keys, dims) = expression.keysAndDims();
 | |
|   LONGS_EQUAL(2,keys.size());
 | |
|   LONGS_EQUAL(2,dims.size());
 | |
|   LONGS_EQUAL(1,keys[0]);
 | |
|   LONGS_EQUAL(2,keys[1]);
 | |
|   LONGS_EQUAL(6,dims[0]);
 | |
|   LONGS_EQUAL(3,dims[1]);
 | |
| 
 | |
|   // traceExecution of shallow tree
 | |
|   typedef internal::UnaryExpression<Point2, Point3> Unary;
 | |
|   size_t size = expression.traceSize();
 | |
|   internal::ExecutionTraceStorage traceStorage[size];
 | |
|   internal::ExecutionTrace<Point2> trace;
 | |
|   Point2 value = expression.traceExecution(values, trace, traceStorage);
 | |
|   EXPECT(assert_equal(Point2(0,0),value, 1e-9));
 | |
|   // trace.print();
 | |
| 
 | |
|   // Expected Jacobians
 | |
|   Matrix23 expected23;
 | |
|   expected23 << 1, 0, 0, 0, 1, 0;
 | |
| 
 | |
|   // Check matrices
 | |
|   boost::optional<Unary::Record*> r = trace.record<Unary::Record>();
 | |
|   CHECK(r);
 | |
|   EXPECT(assert_equal(expected23, (Matrix)(*r)->dTdA1, 1e-9));
 | |
| 
 | |
|   // Linearization
 | |
|   ExpressionFactor<Point2> f2(model, measured, expression);
 | |
|   EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9);
 | |
|   EXPECT_LONGS_EQUAL(2, f2.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
 | |
|   EXPECT(assert_equal(*expected, *gf2, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Binary(Leaf,Unary(Binary(Leaf,Leaf)))
 | |
| TEST(ExpressionFactor, tree) {
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Pose3());
 | |
|   values.insert(2, Point3(0, 0, 1));
 | |
|   values.insert(3, Cal3_S2());
 | |
| 
 | |
|   // Create old-style factor to create expected value and derivatives
 | |
|   GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
 | |
|   double expected_error = old.error(values);
 | |
|   GaussianFactor::shared_ptr expected = old.linearize(values);
 | |
| 
 | |
|   // Create leaves
 | |
|   Pose3_ x(1);
 | |
|   Point3_ p(2);
 | |
|   Cal3_S2_ K(3);
 | |
| 
 | |
|   // Create expression tree
 | |
|   Point3_ p_cam(x, &Pose3::transformTo, p);
 | |
|   Point2_ xy_hat(Project, p_cam);
 | |
|   Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
 | |
| 
 | |
|   // Create factor and check value, dimension, linearization
 | |
|   ExpressionFactor<Point2> f(model, measured, uv_hat);
 | |
|   EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
 | |
|   EXPECT_LONGS_EQUAL(2, f.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
 | |
|   EXPECT(assert_equal(*expected, *gf, 1e-9));
 | |
| 
 | |
|   // Concise version
 | |
|   ExpressionFactor<Point2> f2(model, measured,
 | |
|       uncalibrate(K, project(transformTo(x, p))));
 | |
|   EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9);
 | |
|   EXPECT_LONGS_EQUAL(2, f2.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
 | |
|   EXPECT(assert_equal(*expected, *gf2, 1e-9));
 | |
| 
 | |
|   // Try ternary version
 | |
|   ExpressionFactor<Point2> f3(model, measured, project3(x, p, K));
 | |
|   EXPECT_DOUBLES_EQUAL(expected_error, f3.error(values), 1e-9);
 | |
|   EXPECT_LONGS_EQUAL(2, f3.dim());
 | |
|   boost::shared_ptr<GaussianFactor> gf3 = f3.linearize(values);
 | |
|   EXPECT(assert_equal(*expected, *gf3, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ExpressionFactor, Compose1) {
 | |
| 
 | |
|   // Create expression
 | |
|   Rot3_ R1(1), R2(2);
 | |
|   Rot3_ R3 = R1 * R2;
 | |
| 
 | |
|   // Create factor
 | |
|   ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Rot3());
 | |
|   values.insert(2, Rot3());
 | |
| 
 | |
|   // Check unwhitenedError
 | |
|   std::vector<Matrix> H(2);
 | |
|   Vector actual = f.unwhitenedError(values, H);
 | |
|   EXPECT(assert_equal(I_3x3, H[0],1e-9));
 | |
|   EXPECT(assert_equal(I_3x3, H[1],1e-9));
 | |
| 
 | |
|   // Check linearization
 | |
|   JacobianFactor expected(1, I_3x3, 2, I_3x3, Z_3x1);
 | |
|   boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
 | |
|   boost::shared_ptr<JacobianFactor> jf = //
 | |
|       boost::dynamic_pointer_cast<JacobianFactor>(gf);
 | |
|   EXPECT(assert_equal(expected, *jf,1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test compose with arguments referring to the same rotation
 | |
| TEST(ExpressionFactor, compose2) {
 | |
| 
 | |
|   // Create expression
 | |
|   Rot3_ R1(1), R2(1);
 | |
|   Rot3_ R3 = R1 * R2;
 | |
| 
 | |
|   // Create factor
 | |
|   ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Rot3());
 | |
| 
 | |
|   // Check unwhitenedError
 | |
|   std::vector<Matrix> H(1);
 | |
|   Vector actual = f.unwhitenedError(values, H);
 | |
|   EXPECT_LONGS_EQUAL(1, H.size());
 | |
|   EXPECT(assert_equal(2*I_3x3, H[0],1e-9));
 | |
| 
 | |
|   // Check linearization
 | |
|   JacobianFactor expected(1, 2 * I_3x3, Z_3x1);
 | |
|   boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
 | |
|   boost::shared_ptr<JacobianFactor> jf = //
 | |
|       boost::dynamic_pointer_cast<JacobianFactor>(gf);
 | |
|   EXPECT(assert_equal(expected, *jf,1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test compose with one arguments referring to a constant same rotation
 | |
| TEST(ExpressionFactor, compose3) {
 | |
| 
 | |
|   // Create expression
 | |
|   Rot3_ R1(Rot3::identity()), R2(3);
 | |
|   Rot3_ R3 = R1 * R2;
 | |
| 
 | |
|   // Create factor
 | |
|   ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(3, Rot3());
 | |
| 
 | |
|   // Check unwhitenedError
 | |
|   std::vector<Matrix> H(1);
 | |
|   Vector actual = f.unwhitenedError(values, H);
 | |
|   EXPECT_LONGS_EQUAL(1, H.size());
 | |
|   EXPECT(assert_equal(I_3x3, H[0],1e-9));
 | |
| 
 | |
|   // Check linearization
 | |
|   JacobianFactor expected(3, I_3x3, Z_3x1);
 | |
|   boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
 | |
|   boost::shared_ptr<JacobianFactor> jf = //
 | |
|       boost::dynamic_pointer_cast<JacobianFactor>(gf);
 | |
|   EXPECT(assert_equal(expected, *jf,1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test compose with three arguments
 | |
| Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3,
 | |
|     OptionalJacobian<3, 3> H1, OptionalJacobian<3, 3> H2, OptionalJacobian<3, 3> H3) {
 | |
|   // return dummy derivatives (not correct, but that's ok for testing here)
 | |
|   if (H1)
 | |
|     *H1 = I_3x3;
 | |
|   if (H2)
 | |
|     *H2 = I_3x3;
 | |
|   if (H3)
 | |
|     *H3 = I_3x3;
 | |
|   return R1 * (R2 * R3);
 | |
| }
 | |
| 
 | |
| TEST(ExpressionFactor, composeTernary) {
 | |
| 
 | |
|   // Create expression
 | |
|   Rot3_ A(1), B(2), C(3);
 | |
|   Rot3_ ABC(composeThree, A, B, C);
 | |
| 
 | |
|   // Create factor
 | |
|   ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), ABC);
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Rot3());
 | |
|   values.insert(2, Rot3());
 | |
|   values.insert(3, Rot3());
 | |
| 
 | |
|   // Check unwhitenedError
 | |
|   std::vector<Matrix> H(3);
 | |
|   Vector actual = f.unwhitenedError(values, H);
 | |
|   EXPECT_LONGS_EQUAL(3, H.size());
 | |
|   EXPECT(assert_equal(I_3x3, H[0],1e-9));
 | |
|   EXPECT(assert_equal(I_3x3, H[1],1e-9));
 | |
|   EXPECT(assert_equal(I_3x3, H[2],1e-9));
 | |
| 
 | |
|   // Check linearization
 | |
|   JacobianFactor expected(1, I_3x3, 2, I_3x3, 3, I_3x3, Z_3x1);
 | |
|   boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
 | |
|   boost::shared_ptr<JacobianFactor> jf = //
 | |
|       boost::dynamic_pointer_cast<JacobianFactor>(gf);
 | |
|   EXPECT(assert_equal(expected, *jf,1e-9));
 | |
| }
 | |
| 
 | |
| TEST(ExpressionFactor, tree_finite_differences) {
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Pose3());
 | |
|   values.insert(2, Point3(0, 0, 1));
 | |
|   values.insert(3, Cal3_S2());
 | |
| 
 | |
|   // Create leaves
 | |
|   Pose3_ x(1);
 | |
|   Point3_ p(2);
 | |
|   Cal3_S2_ K(3);
 | |
| 
 | |
|   // Create expression tree
 | |
|   Point3_ p_cam(x, &Pose3::transformTo, p);
 | |
|   Point2_ xy_hat(Project, p_cam);
 | |
|   Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
 | |
| 
 | |
|   const double fd_step = 1e-5;
 | |
|   const double tolerance = 1e-5;
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(uv_hat, values, fd_step, tolerance);
 | |
| }
 | |
| 
 | |
| TEST(ExpressionFactor, push_back) {
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.addExpressionFactor(model, Point2(0, 0), leaf::p);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test with multiple compositions on duplicate keys
 | |
| struct Combine {
 | |
|   double a, b;
 | |
|   Combine(double a, double b) : a(a), b(b) {}
 | |
|   double operator()(const double& x, const double& y, OptionalJacobian<1, 1> H1,
 | |
|                     OptionalJacobian<1, 1> H2) {
 | |
|     if (H1) (*H1) << a;
 | |
|     if (H2) (*H2) << b;
 | |
|     return a * x + b * y;
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(Expression, testMultipleCompositions) {
 | |
|   const double tolerance = 1e-5;
 | |
|   const double fd_step = 1e-5;
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(1, 10.0);
 | |
|   values.insert(2, 20.0);
 | |
| 
 | |
|   Expression<double> v1_(Key(1));
 | |
|   Expression<double> v2_(Key(2));
 | |
| 
 | |
|   // BinaryExpression(1,2)
 | |
|   //   Leaf, key = 1
 | |
|   //   Leaf, key = 2
 | |
|   Expression<double> sum1_(Combine(1, 2), v1_, v2_);
 | |
|   EXPECT(sum1_.keys() == list_of(1)(2));
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum1_, values, fd_step, tolerance);
 | |
| 
 | |
|   // BinaryExpression(3,4)
 | |
|   //   BinaryExpression(1,2)
 | |
|   //     Leaf, key = 1
 | |
|   //     Leaf, key = 2
 | |
|   //   Leaf, key = 1
 | |
|   Expression<double> sum2_(Combine(3, 4), sum1_, v1_);
 | |
|   EXPECT(sum2_.keys() == list_of(1)(2));
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum2_, values, fd_step, tolerance);
 | |
| 
 | |
|   // BinaryExpression(5,6)
 | |
|   //   BinaryExpression(3,4)
 | |
|   //     BinaryExpression(1,2)
 | |
|   //       Leaf, key = 1
 | |
|   //       Leaf, key = 2
 | |
|   //     Leaf, key = 1
 | |
|   //   BinaryExpression(1,2)
 | |
|   //     Leaf, key = 1
 | |
|   //     Leaf, key = 2
 | |
|   Expression<double> sum3_(Combine(5, 6), sum1_, sum2_);
 | |
|   EXPECT(sum3_.keys() == list_of(1)(2));
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum3_, values, fd_step, tolerance);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Another test, with Ternary Expressions
 | |
| static double combine3(const double& x, const double& y, const double& z,
 | |
|                         OptionalJacobian<1, 1> H1, OptionalJacobian<1, 1> H2,
 | |
|                         OptionalJacobian<1, 1> H3) {
 | |
|   if (H1) (*H1) << 1.0;
 | |
|   if (H2) (*H2) << 2.0;
 | |
|   if (H3) (*H3) << 3.0;
 | |
|   return x + 2.0 * y + 3.0 * z;
 | |
| }
 | |
| 
 | |
| TEST(Expression, testMultipleCompositions2) {
 | |
|   const double tolerance = 1e-5;
 | |
|   const double fd_step = 1e-5;
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(1, 10.0);
 | |
|   values.insert(2, 20.0);
 | |
|   values.insert(3, 30.0);
 | |
| 
 | |
|   Expression<double> v1_(Key(1));
 | |
|   Expression<double> v2_(Key(2));
 | |
|   Expression<double> v3_(Key(3));
 | |
| 
 | |
|   Expression<double> sum1_(Combine(4,5), v1_, v2_);
 | |
|   EXPECT(sum1_.keys() == list_of(1)(2));
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum1_, values, fd_step, tolerance);
 | |
| 
 | |
|   Expression<double> sum2_(combine3, v1_, v2_, v3_);
 | |
|   EXPECT(sum2_.keys() == list_of(1)(2)(3));
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum2_, values, fd_step, tolerance);
 | |
| 
 | |
|   Expression<double> sum3_(combine3, v3_, v2_, v1_);
 | |
|   EXPECT(sum3_.keys() == list_of(1)(2)(3));
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum3_, values, fd_step, tolerance);
 | |
| 
 | |
|   Expression<double> sum4_(combine3, sum1_, sum2_, sum3_);
 | |
|   EXPECT(sum4_.keys() == list_of(1)(2)(3));
 | |
|   EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum4_, values, fd_step, tolerance);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test multiplication with the inverse of a matrix
 | |
| TEST(ExpressionFactor, MultiplyWithInverse) {
 | |
|   auto model = noiseModel::Isotropic::Sigma(3, 1);
 | |
| 
 | |
|   // Create expression
 | |
|   Vector3_ f_expr(MultiplyWithInverse<3>(), Expression<Matrix3>(0), Vector3_(1));
 | |
| 
 | |
|   // Check derivatives
 | |
|   Values values;
 | |
|   Matrix3 A = Vector3(1, 2, 3).asDiagonal();
 | |
|   A(0, 1) = 0.1;
 | |
|   A(0, 2) = 0.1;
 | |
|   const Vector3 b(0.1, 0.2, 0.3);
 | |
|   values.insert<Matrix3>(0, A);
 | |
|   values.insert<Vector3>(1, b);
 | |
|   ExpressionFactor<Vector3> factor(model, Vector3::Zero(), f_expr);
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test multiplication with the inverse of a matrix function
 | |
| namespace test_operator {
 | |
| Vector3 f(const Point2& a, const Vector3& b, OptionalJacobian<3, 2> H1,
 | |
|           OptionalJacobian<3, 3> H2) {
 | |
|   Matrix3 A = Vector3(1, 2, 3).asDiagonal();
 | |
|   A(0, 1) = a.x();
 | |
|   A(0, 2) = a.y();
 | |
|   A(1, 0) = a.x();
 | |
|   if (H1) *H1 << b.y(), b.z(), b.x(), 0, 0, 0;
 | |
|   if (H2) *H2 = A;
 | |
|   return A * b;
 | |
| }
 | |
| }
 | |
| 
 | |
| TEST(ExpressionFactor, MultiplyWithInverseFunction) {
 | |
|   auto model = noiseModel::Isotropic::Sigma(3, 1);
 | |
| 
 | |
|   using test_operator::f;
 | |
|   Vector3_ f_expr(MultiplyWithInverseFunction<Point2, 3>(f),
 | |
|                   Expression<Point2>(0), Vector3_(1));
 | |
| 
 | |
|   // Check derivatives
 | |
|   Point2 a(1, 2);
 | |
|   const Vector3 b(0.1, 0.2, 0.3);
 | |
|   Matrix32 H1;
 | |
|   Matrix3 A;
 | |
|   const Vector Ab = f(a, b, H1, A);
 | |
|   CHECK(assert_equal(A * b, Ab));
 | |
|   CHECK(assert_equal(
 | |
|       numericalDerivative11<Vector3, Point2>(
 | |
|           std::bind(f, std::placeholders::_1, b, boost::none, boost::none), a),
 | |
|       H1));
 | |
| 
 | |
|   Values values;
 | |
|   values.insert<Point2>(0, a);
 | |
|   values.insert<Vector3>(1, b);
 | |
|   ExpressionFactor<Vector3> factor(model, Vector3::Zero(), f_expr);
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Test N-ary variadic template
 | |
| class TestNaryFactor
 | |
|     : public gtsam::ExpressionFactorN<gtsam::Point3 /*return type*/,
 | |
|                                       gtsam::Rot3, gtsam::Point3, 
 | |
|                                       gtsam::Rot3, gtsam::Point3> {
 | |
| private:
 | |
|   using This = TestNaryFactor;
 | |
|   using Base =
 | |
|       gtsam::ExpressionFactorN<gtsam::Point3 /*return type*/,
 | |
|         gtsam::Rot3, gtsam::Point3, gtsam::Rot3, gtsam::Point3>;
 | |
| 
 | |
| public:
 | |
|   /// default constructor
 | |
|   TestNaryFactor() = default;
 | |
|   ~TestNaryFactor() override = default;
 | |
| 
 | |
|   TestNaryFactor(gtsam::Key kR1, gtsam::Key kV1,  gtsam::Key kR2, gtsam::Key kV2,
 | |
|     const gtsam::SharedNoiseModel &model, const gtsam::Point3& measured)
 | |
|       : Base({kR1, kV1, kR2, kV2}, model, measured) {
 | |
|     this->initialize(expression({kR1, kV1, kR2, kV2}));
 | |
|   }
 | |
| 
 | |
|   /// @return a deep copy of this factor
 | |
|   gtsam::NonlinearFactor::shared_ptr clone() const override {
 | |
|     return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | |
|         gtsam::NonlinearFactor::shared_ptr(new This(*this)));
 | |
|   }
 | |
| 
 | |
|   // Return measurement expression
 | |
|   gtsam::Expression<gtsam::Point3> expression(
 | |
|       const std::array<gtsam::Key, NARY_EXPRESSION_SIZE> &keys) const override {
 | |
|     gtsam::Expression<gtsam::Rot3>   R1_(keys[0]);
 | |
|     gtsam::Expression<gtsam::Point3> V1_(keys[1]);
 | |
|     gtsam::Expression<gtsam::Rot3>   R2_(keys[2]);
 | |
|     gtsam::Expression<gtsam::Point3> V2_(keys[3]);
 | |
|     return {gtsam::rotate(R1_, V1_) - gtsam::rotate(R2_, V2_)};
 | |
|   }
 | |
| 
 | |
|   /** print */
 | |
|   void print(const std::string &s,
 | |
|              const gtsam::KeyFormatter &keyFormatter =
 | |
|                  gtsam::DefaultKeyFormatter) const override {
 | |
|     std::cout << s << "TestNaryFactor("
 | |
|               << keyFormatter(Factor::keys_[0]) << ","
 | |
|               << keyFormatter(Factor::keys_[1]) << ","
 | |
|               << keyFormatter(Factor::keys_[2]) << ","
 | |
|               << keyFormatter(Factor::keys_[3]) << ")\n";
 | |
|     gtsam::traits<gtsam::Point3>::Print(measured_, "  measured: ");
 | |
|     this->noiseModel_->print("  noise model: ");
 | |
|   }
 | |
| 
 | |
|   /** equals */
 | |
|   bool equals(const gtsam::NonlinearFactor &expected,
 | |
|               double tol = 1e-9) const override {
 | |
|     const This *e = dynamic_cast<const This *>(&expected);
 | |
|     return e != nullptr && Base::equals(*e, tol) && 
 | |
|       gtsam::traits<gtsam::Point3>::Equals(measured_,e->measured_, tol);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /** Serialization function */
 | |
|   friend class boost::serialization::access;
 | |
|   template <class ARCHIVE>
 | |
|   void serialize(ARCHIVE &ar, const unsigned int /*version*/) {
 | |
|     ar &boost::serialization::make_nvp(
 | |
|         "TestNaryFactor",
 | |
|         boost::serialization::base_object<Base>(*this));
 | |
|     ar &BOOST_SERIALIZATION_NVP(measured_);
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(ExpressionFactor, variadicTemplate) {
 | |
|   using gtsam::symbol_shorthand::R;
 | |
|   using gtsam::symbol_shorthand::V;
 | |
| 
 | |
|   // Create factor
 | |
|   TestNaryFactor f(R(0),V(0), R(1), V(1), noiseModel::Unit::Create(3), Point3(0,0,0));
 | |
|   
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(R(0), Rot3::Ypr(0.1, 0.2, 0.3));
 | |
|   values.insert(V(0), Point3(1, 2, 3));
 | |
|   values.insert(R(1), Rot3::Ypr(0.2, 0.5, 0.2));
 | |
|   values.insert(V(1), Point3(5, 6, 7));
 | |
| 
 | |
|   // Check unwhitenedError
 | |
|   std::vector<Matrix> H(4);
 | |
|   Vector actual = f.unwhitenedError(values, H);
 | |
|   EXPECT_LONGS_EQUAL(4, H.size());
 | |
|   EXPECT(assert_equal(Eigen::Vector3d(-5.63578115, -4.85353243, -1.4801204), actual, 1e-5));
 | |
|   
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-8, 1e-5);
 | |
| }
 | |
| 
 | |
| 
 | |
| TEST(ExpressionFactor, crossProduct) {
 | |
|   auto model = noiseModel::Isotropic::Sigma(3, 1);
 | |
| 
 | |
|   // Create expression
 | |
|   const auto a = Vector3_(1);
 | |
|   const auto b = Vector3_(2);
 | |
|   Vector3_ f_expr = cross(a, b);
 | |
| 
 | |
|   // Check derivatives
 | |
|   Values values;
 | |
|   values.insert(1, Vector3(0.1, 0.2, 0.3));
 | |
|   values.insert(2, Vector3(0.4, 0.5, 0.6));
 | |
|   ExpressionFactor<Vector3> factor(model, Vector3::Zero(), f_expr);
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST(ExpressionFactor, dotProduct) {
 | |
|   auto model = noiseModel::Isotropic::Sigma(1, 1);
 | |
| 
 | |
|   // Create expression
 | |
|   const auto a = Vector3_(1);
 | |
|   const auto b = Vector3_(2);
 | |
|   Double_ f_expr = dot(a, b);
 | |
| 
 | |
|   // Check derivatives
 | |
|   Values values;
 | |
|   values.insert(1, Vector3(0.1, 0.2, 0.3));
 | |
|   values.insert(2, Vector3(0.4, 0.5, 0.6));
 | |
|   ExpressionFactor<double> factor(model, .0, f_expr);
 | |
|   EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |