216 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file testExpression.cpp
 | 
						|
 * @date September 18, 2014
 | 
						|
 * @author Frank Dellaert
 | 
						|
 * @author Paul Furgale
 | 
						|
 * @brief unit tests for Block Automatic Differentiation
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam_unstable/nonlinear/ceres_example.h>
 | 
						|
#include <gtsam_unstable/nonlinear/AdaptAutoDiff.h>
 | 
						|
#include <gtsam/nonlinear/Expression.h>
 | 
						|
#include <gtsam/geometry/PinholeCamera.h>
 | 
						|
#include <gtsam/geometry/Pose3.h>
 | 
						|
#include <gtsam/geometry/Cal3_S2.h>
 | 
						|
#include <gtsam/geometry/Cal3Bundler.h>
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
#include <gtsam/base/LieScalar.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/assign/list_of.hpp>
 | 
						|
using boost::assign::list_of;
 | 
						|
using boost::assign::map_list_of;
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
// The DefaultChart of Camera below is laid out like Snavely's 9-dim vector
 | 
						|
typedef PinholeCamera<Cal3Bundler> Camera;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Some Ceres Snippets copied for testing
 | 
						|
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 | 
						|
template<typename T> inline T &RowMajorAccess(T *base, int rows, int cols,
 | 
						|
    int i, int j) {
 | 
						|
  return base[cols * i + j];
 | 
						|
}
 | 
						|
 | 
						|
inline double RandDouble() {
 | 
						|
  double r = static_cast<double>(rand());
 | 
						|
  return r / RAND_MAX;
 | 
						|
}
 | 
						|
 | 
						|
// A structure for projecting a 3x4 camera matrix and a
 | 
						|
// homogeneous 3D point, to a 2D inhomogeneous point.
 | 
						|
struct Projective {
 | 
						|
  // Function that takes P and X as separate vectors:
 | 
						|
  //   P, X -> x
 | 
						|
  template<typename A>
 | 
						|
  bool operator()(A const P[12], A const X[4], A x[2]) const {
 | 
						|
    A PX[3];
 | 
						|
    for (int i = 0; i < 3; ++i) {
 | 
						|
      PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0]
 | 
						|
          + RowMajorAccess(P, 3, 4, i, 1) * X[1]
 | 
						|
          + RowMajorAccess(P, 3, 4, i, 2) * X[2]
 | 
						|
          + RowMajorAccess(P, 3, 4, i, 3) * X[3];
 | 
						|
    }
 | 
						|
    if (PX[2] != 0.0) {
 | 
						|
      x[0] = PX[0] / PX[2];
 | 
						|
      x[1] = PX[1] / PX[2];
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Adapt to eigen types
 | 
						|
  Vector2 operator()(const MatrixRowMajor& P, const Vector4& X) const {
 | 
						|
    Vector2 x;
 | 
						|
    if (operator()(P.data(), X.data(), x.data()))
 | 
						|
      return x;
 | 
						|
    else
 | 
						|
      throw std::runtime_error("Projective fail");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test Ceres AutoDiff
 | 
						|
TEST(Expression, AutoDiff) {
 | 
						|
  using ceres::internal::AutoDiff;
 | 
						|
 | 
						|
  // Instantiate function
 | 
						|
  Projective projective;
 | 
						|
 | 
						|
  // Make arguments
 | 
						|
  typedef Eigen::Matrix<double, 3, 4, Eigen::RowMajor> M;
 | 
						|
  M P;
 | 
						|
  P << 1, 0, 0, 0, 0, 1, 0, 5, 0, 0, 1, 0;
 | 
						|
  Vector4 X(10, 0, 5, 1);
 | 
						|
 | 
						|
  // Apply the mapping, to get image point b_x.
 | 
						|
  Vector expected = Vector2(2, 1);
 | 
						|
  Vector2 actual = projective(P, X);
 | 
						|
  EXPECT(assert_equal(expected,actual,1e-9));
 | 
						|
 | 
						|
  // Get expected derivatives
 | 
						|
  Matrix E1 = numericalDerivative21<Vector2, M, Vector4>(Projective(), P, X);
 | 
						|
  Matrix E2 = numericalDerivative22<Vector2, M, Vector4>(Projective(), P, X);
 | 
						|
 | 
						|
  // Get derivatives with AutoDiff
 | 
						|
  Vector2 actual2;
 | 
						|
  MatrixRowMajor H1(2, 12), H2(2, 4);
 | 
						|
  double *parameters[] = { P.data(), X.data() };
 | 
						|
  double *jacobians[] = { H1.data(), H2.data() };
 | 
						|
  CHECK(
 | 
						|
      (AutoDiff<Projective, double, 12, 4>::Differentiate( projective, parameters, 2, actual2.data(), jacobians)));
 | 
						|
  EXPECT(assert_equal(E1,H1,1e-8));
 | 
						|
  EXPECT(assert_equal(E2,H2,1e-8));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test Ceres AutoDiff on Snavely, defined in ceres_example.h
 | 
						|
// Adapt to GTSAM types
 | 
						|
Vector2 adapted(const Vector9& P, const Vector3& X) {
 | 
						|
  SnavelyProjection snavely;
 | 
						|
  Vector2 x;
 | 
						|
  if (snavely(P.data(), X.data(), x.data()))
 | 
						|
    return x;
 | 
						|
  else
 | 
						|
    throw std::runtime_error("Snavely fail");
 | 
						|
}
 | 
						|
 | 
						|
TEST(Expression, AutoDiff2) {
 | 
						|
  using ceres::internal::AutoDiff;
 | 
						|
 | 
						|
  // Instantiate function
 | 
						|
  SnavelyProjection snavely;
 | 
						|
 | 
						|
  // Make arguments
 | 
						|
  Vector9 P; // zero rotation, (0,5,0) translation, focal length 1
 | 
						|
  P << 0, 0, 0, 0, 5, 0, 1, 0, 0;
 | 
						|
  Vector3 X(10, 0, -5); // negative Z-axis convention of Snavely!
 | 
						|
 | 
						|
  // Apply the mapping, to get image point b_x.
 | 
						|
  Vector expected = Vector2(2, 1);
 | 
						|
  Vector2 actual = adapted(P, X);
 | 
						|
  EXPECT(assert_equal(expected,actual,1e-9));
 | 
						|
 | 
						|
  // Get expected derivatives
 | 
						|
  Matrix E1 = numericalDerivative21<Vector2, Vector9, Vector3>(adapted, P, X);
 | 
						|
  Matrix E2 = numericalDerivative22<Vector2, Vector9, Vector3>(adapted, P, X);
 | 
						|
 | 
						|
  // Get derivatives with AutoDiff
 | 
						|
  Vector2 actual2;
 | 
						|
  MatrixRowMajor H1(2, 9), H2(2, 3);
 | 
						|
  double *parameters[] = { P.data(), X.data() };
 | 
						|
  double *jacobians[] = { H1.data(), H2.data() };
 | 
						|
  CHECK(
 | 
						|
      (AutoDiff<SnavelyProjection, double, 9, 3>::Differentiate( snavely, parameters, 2, actual2.data(), jacobians)));
 | 
						|
  EXPECT(assert_equal(E1,H1,1e-8));
 | 
						|
  EXPECT(assert_equal(E2,H2,1e-8));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test AutoDiff wrapper Snavely
 | 
						|
TEST(Expression, AutoDiff3) {
 | 
						|
 | 
						|
  // Make arguments
 | 
						|
  Camera P(Pose3(Rot3(), Point3(0, 5, 0)), Cal3Bundler(1, 0, 0));
 | 
						|
  Point3 X(10, 0, -5); // negative Z-axis convention of Snavely!
 | 
						|
 | 
						|
  typedef AdaptAutoDiff<SnavelyProjection, Point2, Camera, Point3> Adaptor;
 | 
						|
  Adaptor snavely;
 | 
						|
 | 
						|
  // Apply the mapping, to get image point b_x.
 | 
						|
  Point2 expected(2, 1);
 | 
						|
  Point2 actual = snavely(P, X);
 | 
						|
  EXPECT(assert_equal(expected,actual,1e-9));
 | 
						|
 | 
						|
//  // Get expected derivatives
 | 
						|
  Matrix E1 = numericalDerivative21<Point2, Camera, Point3>(Adaptor(), P, X);
 | 
						|
  Matrix E2 = numericalDerivative22<Point2, Camera, Point3>(Adaptor(), P, X);
 | 
						|
 | 
						|
  // Get derivatives with AutoDiff, not gives RowMajor results!
 | 
						|
  Matrix29 H1;
 | 
						|
  Matrix23 H2;
 | 
						|
  Point2 actual2 = snavely(P, X, H1, H2);
 | 
						|
  EXPECT(assert_equal(expected,actual2,1e-9));
 | 
						|
  EXPECT(assert_equal(E1,H1,1e-8));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test AutoDiff wrapper in an expression
 | 
						|
TEST(Expression, Snavely) {
 | 
						|
  Expression<Camera> P(1);
 | 
						|
  Expression<Point3> X(2);
 | 
						|
  typedef AdaptAutoDiff<SnavelyProjection, Point2, Camera, Point3> Adaptor;
 | 
						|
  Expression<Point2> expression(Adaptor(), P, X);
 | 
						|
#ifdef GTSAM_USE_QUATERNIONS
 | 
						|
  EXPECT_LONGS_EQUAL(400,expression.traceSize()); // Todo, should be zero
 | 
						|
#else
 | 
						|
  EXPECT_LONGS_EQUAL(432,expression.traceSize()); // Todo, should be zero
 | 
						|
#endif
 | 
						|
  set<Key> expected = list_of(1)(2);
 | 
						|
  EXPECT(expected == expression.keys());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 | 
						|
 |