133 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
| from __future__ import print_function
 | |
| 
 | |
| import matplotlib.pyplot as plt
 | |
| from mpl_toolkits.mplot3d import Axes3D
 | |
| import numpy as np
 | |
| import time  # for sleep()
 | |
| 
 | |
| import gtsam
 | |
| from gtsam_examples import SFMdata
 | |
| import gtsam_utils
 | |
| 
 | |
| # shorthand symbols:
 | |
| X = lambda i: int(gtsam.Symbol('x', i))
 | |
| L = lambda j: int(gtsam.Symbol('l', j))
 | |
| 
 | |
| def visual_ISAM2_plot(poses, points, result):
 | |
|     # VisualISAMPlot plots current state of ISAM2 object
 | |
|     # Author: Ellon Paiva
 | |
|     # Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
 | |
| 
 | |
|     # Declare an id for the figure
 | |
|     fignum = 0
 | |
| 
 | |
|     fig = plt.figure(fignum)
 | |
|     ax = fig.gca(projection='3d')
 | |
|     plt.cla()
 | |
| 
 | |
|     # Plot points
 | |
|     # Can't use data because current frame might not see all points
 | |
|     # marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate()) # TODO - this is slow
 | |
|     # gtsam.plot3DPoints(result, [], marginals)
 | |
|     gtsam_utils.plot3DPoints(fignum, result, 'rx')
 | |
| 
 | |
|     # Plot cameras
 | |
|     i = 0
 | |
|     while result.exists(X(i)):
 | |
|         pose_i = result.atPose3(X(i))
 | |
|         gtsam_utils.plotPose3(fignum, pose_i, 10)
 | |
|         i += 1
 | |
| 
 | |
|     # draw
 | |
|     ax.set_xlim3d(-40, 40)
 | |
|     ax.set_ylim3d(-40, 40)
 | |
|     ax.set_zlim3d(-40, 40)
 | |
|     plt.pause(1)
 | |
| 
 | |
| def visual_ISAM2_example():
 | |
|     plt.ion()
 | |
| 
 | |
|     # Define the camera calibration parameters
 | |
|     K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
 | |
| 
 | |
|     # Define the camera observation noise model
 | |
|     measurementNoise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0)  # one pixel in u and v
 | |
| 
 | |
|     # Create the set of ground-truth landmarks
 | |
|     points = SFMdata.createPoints()
 | |
| 
 | |
|     # Create the set of ground-truth poses
 | |
|     poses = SFMdata.createPoses()
 | |
| 
 | |
|     # Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps to maintain proper linearization
 | |
|     # and efficient variable ordering, iSAM2 performs partial relinearization/reordering at each step. A parameter
 | |
|     # structure is available that allows the user to set various properties, such as the relinearization threshold
 | |
|     # and type of linear solver. For this example, we we set the relinearization threshold small so the iSAM2 result
 | |
|     # will approach the batch result.
 | |
|     parameters = gtsam.ISAM2Params()
 | |
|     parameters.relinearize_threshold = 0.01
 | |
|     parameters.relinearize_skip = 1
 | |
|     isam = gtsam.ISAM2(parameters)
 | |
| 
 | |
|     # Create a Factor Graph and Values to hold the new data
 | |
|     graph = gtsam.NonlinearFactorGraph()
 | |
|     initialEstimate = gtsam.Values()
 | |
| 
 | |
|     #  Loop over the different poses, adding the observations to iSAM incrementally
 | |
|     for i, pose in enumerate(poses):
 | |
| 
 | |
|         # Add factors for each landmark observation
 | |
|         for j, point in enumerate(points):
 | |
|             camera = gtsam.PinholeCameraCal3_S2(pose, K)
 | |
|             measurement = camera.project(point)
 | |
|             graph.push_back(gtsam.GenericProjectionFactorCal3_S2(measurement, measurementNoise, X(i), L(j), K))
 | |
| 
 | |
|         # Add an initial guess for the current pose
 | |
|         # Intentionally initialize the variables off from the ground truth
 | |
|         initialEstimate.insert(X(i), pose.compose(gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
 | |
| 
 | |
|         # If this is the first iteration, add a prior on the first pose to set the coordinate frame
 | |
|         # and a prior on the first landmark to set the scale
 | |
|         # Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
 | |
|         # adding it to iSAM.
 | |
|         if(i == 0):
 | |
|             # Add a prior on pose x0
 | |
|             poseNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))  # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | |
|             graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], poseNoise))
 | |
| 
 | |
|             # Add a prior on landmark l0
 | |
|             pointNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
 | |
|             graph.push_back(gtsam.PriorFactorPoint3(L(0), points[0], pointNoise))  # add directly to graph
 | |
|             
 | |
|             # Add initial guesses to all observed landmarks
 | |
|             # Intentionally initialize the variables off from the ground truth
 | |
|             for j, point in enumerate(points):
 | |
|                 initialEstimate.insert(L(j), point + gtsam.Point3(-0.25, 0.20, 0.15))
 | |
|         else:
 | |
|             # Update iSAM with the new factors
 | |
|             isam.update(graph, initialEstimate)
 | |
|             # Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
 | |
|             # If accuracy is desired at the expense of time, update(*) can be called additional times
 | |
|             # to perform multiple optimizer iterations every step.
 | |
|             isam.update()
 | |
|             currentEstimate = isam.calculate_estimate()
 | |
|             print("****************************************************")
 | |
|             print("Frame", i, ":")
 | |
|             for j in range(i + 1):
 | |
|                 print(X(j), ":", currentEstimate.atPose3(X(j)))
 | |
| 
 | |
|             for j in range(len(points)):
 | |
|                 print(L(j), ":", currentEstimate.atPoint3(L(j)))
 | |
| 
 | |
|             visual_ISAM2_plot(poses, points, currentEstimate)
 | |
| 
 | |
|             # Clear the factor graph and values for the next iteration
 | |
|             graph.resize(0)
 | |
|             initialEstimate.clear()
 | |
|             
 | |
|     plt.ioff()
 | |
|     plt.show()
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     visual_ISAM2_example()
 |