444 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			444 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | ||
|     tests/eigen.cpp -- automatic conversion of Eigen types
 | ||
| 
 | ||
|     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
 | ||
| 
 | ||
|     All rights reserved. Use of this source code is governed by a
 | ||
|     BSD-style license that can be found in the LICENSE file.
 | ||
| */
 | ||
| 
 | ||
| #include <pybind11/eigen/matrix.h>
 | ||
| #include <pybind11/stl.h>
 | ||
| 
 | ||
| #include "constructor_stats.h"
 | ||
| #include "pybind11_tests.h"
 | ||
| 
 | ||
| PYBIND11_WARNING_DISABLE_MSVC(4996)
 | ||
| 
 | ||
| #include <Eigen/Cholesky>
 | ||
| 
 | ||
| using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
 | ||
| 
 | ||
| // Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the
 | ||
| // (1-based) row/column number.
 | ||
| template <typename M>
 | ||
| void reset_ref(M &x) {
 | ||
|     for (int i = 0; i < x.rows(); i++) {
 | ||
|         for (int j = 0; j < x.cols(); j++) {
 | ||
|             x(i, j) = 11 + 10 * i + j;
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // Returns a static, column-major matrix
 | ||
| Eigen::MatrixXd &get_cm() {
 | ||
|     static Eigen::MatrixXd *x;
 | ||
|     if (!x) {
 | ||
|         x = new Eigen::MatrixXd(3, 3);
 | ||
|         reset_ref(*x);
 | ||
|     }
 | ||
|     return *x;
 | ||
| }
 | ||
| // Likewise, but row-major
 | ||
| MatrixXdR &get_rm() {
 | ||
|     static MatrixXdR *x;
 | ||
|     if (!x) {
 | ||
|         x = new MatrixXdR(3, 3);
 | ||
|         reset_ref(*x);
 | ||
|     }
 | ||
|     return *x;
 | ||
| }
 | ||
| // Resets the values of the static matrices returned by get_cm()/get_rm()
 | ||
| void reset_refs() {
 | ||
|     reset_ref(get_cm());
 | ||
|     reset_ref(get_rm());
 | ||
| }
 | ||
| 
 | ||
| // Returns element 2,1 from a matrix (used to test copy/nocopy)
 | ||
| double get_elem(const Eigen::Ref<const Eigen::MatrixXd> &m) { return m(2, 1); };
 | ||
| 
 | ||
| // Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix
 | ||
| // reference is referencing rows/columns correctly).
 | ||
| template <typename MatrixArgType>
 | ||
| Eigen::MatrixXd adjust_matrix(MatrixArgType m) {
 | ||
|     Eigen::MatrixXd ret(m);
 | ||
|     for (int c = 0; c < m.cols(); c++) {
 | ||
|         for (int r = 0; r < m.rows(); r++) {
 | ||
|             ret(r, c) += 10 * r + 100 * c; // NOLINT(clang-analyzer-core.uninitialized.Assign)
 | ||
|         }
 | ||
|     }
 | ||
|     return ret;
 | ||
| }
 | ||
| 
 | ||
| struct CustomOperatorNew {
 | ||
|     CustomOperatorNew() = default;
 | ||
| 
 | ||
|     Eigen::Matrix4d a = Eigen::Matrix4d::Zero();
 | ||
|     Eigen::Matrix4d b = Eigen::Matrix4d::Identity();
 | ||
| 
 | ||
|     EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
 | ||
| };
 | ||
| 
 | ||
| TEST_SUBMODULE(eigen_matrix, m) {
 | ||
|     using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>;
 | ||
|     using FixedMatrixC = Eigen::Matrix<float, 5, 6>;
 | ||
|     using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
 | ||
|     using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>;
 | ||
|     using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>;
 | ||
|     using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>;
 | ||
|     using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>;
 | ||
|     using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>;
 | ||
|     using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>;
 | ||
|     using SparseMatrixC = Eigen::SparseMatrix<float>;
 | ||
| 
 | ||
|     // various tests
 | ||
|     m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; });
 | ||
|     m.def("double_row",
 | ||
|           [](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; });
 | ||
|     m.def("double_complex",
 | ||
|           [](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; });
 | ||
|     m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; });
 | ||
|     m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; });
 | ||
|     m.def("double_mat_cm", [](const Eigen::MatrixXf &x) -> Eigen::MatrixXf { return 2.0f * x; });
 | ||
|     m.def("double_mat_rm", [](const DenseMatrixR &x) -> DenseMatrixR { return 2.0f * x; });
 | ||
| 
 | ||
|     // test_eigen_ref_to_python
 | ||
|     // Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended
 | ||
|     m.def("cholesky1",
 | ||
|           [](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
 | ||
|     m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
 | ||
|         return x.llt().matrixL();
 | ||
|     });
 | ||
|     m.def("cholesky3",
 | ||
|           [](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
 | ||
|     m.def("cholesky4", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
 | ||
|         return x.llt().matrixL();
 | ||
|     });
 | ||
| 
 | ||
|     // test_eigen_ref_mutators
 | ||
|     // Mutators: these add some value to the given element using Eigen, but Eigen should be mapping
 | ||
|     // into the numpy array data and so the result should show up there.  There are three versions:
 | ||
|     // one that works on a contiguous-row matrix (numpy's default), one for a contiguous-column
 | ||
|     // matrix, and one for any matrix.
 | ||
|     auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r, c) += v; };
 | ||
|     auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; };
 | ||
| 
 | ||
|     // Mutators (Eigen maps into numpy variables):
 | ||
|     m.def("add_rm", add_rm); // Only takes row-contiguous
 | ||
|     m.def("add_cm", add_cm); // Only takes column-contiguous
 | ||
|     // Overloaded versions that will accept either row or column contiguous:
 | ||
|     m.def("add1", add_rm);
 | ||
|     m.def("add1", add_cm);
 | ||
|     m.def("add2", add_cm);
 | ||
|     m.def("add2", add_rm);
 | ||
|     // This one accepts a matrix of any stride:
 | ||
|     m.def("add_any",
 | ||
|           [](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; });
 | ||
| 
 | ||
|     // Return mutable references (numpy maps into eigen variables)
 | ||
|     m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); });
 | ||
|     m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); });
 | ||
|     // The same references, but non-mutable (numpy maps into eigen variables, but is !writeable)
 | ||
|     m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); });
 | ||
|     m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); });
 | ||
| 
 | ||
|     m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values
 | ||
| 
 | ||
|     // Increments and returns ref to (same) matrix
 | ||
|     m.def(
 | ||
|         "incr_matrix",
 | ||
|         [](Eigen::Ref<Eigen::MatrixXd> m, double v) {
 | ||
|             m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
 | ||
|             return m;
 | ||
|         },
 | ||
|         py::return_value_policy::reference);
 | ||
| 
 | ||
|     // Same, but accepts a matrix of any strides
 | ||
|     m.def(
 | ||
|         "incr_matrix_any",
 | ||
|         [](py::EigenDRef<Eigen::MatrixXd> m, double v) {
 | ||
|             m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
 | ||
|             return m;
 | ||
|         },
 | ||
|         py::return_value_policy::reference);
 | ||
| 
 | ||
|     // Returns an eigen slice of even rows
 | ||
|     m.def(
 | ||
|         "even_rows",
 | ||
|         [](py::EigenDRef<Eigen::MatrixXd> m) {
 | ||
|             return py::EigenDMap<Eigen::MatrixXd>(
 | ||
|                 m.data(),
 | ||
|                 (m.rows() + 1) / 2,
 | ||
|                 m.cols(),
 | ||
|                 py::EigenDStride(m.outerStride(), 2 * m.innerStride()));
 | ||
|         },
 | ||
|         py::return_value_policy::reference);
 | ||
| 
 | ||
|     // Returns an eigen slice of even columns
 | ||
|     m.def(
 | ||
|         "even_cols",
 | ||
|         [](py::EigenDRef<Eigen::MatrixXd> m) {
 | ||
|             return py::EigenDMap<Eigen::MatrixXd>(
 | ||
|                 m.data(),
 | ||
|                 m.rows(),
 | ||
|                 (m.cols() + 1) / 2,
 | ||
|                 py::EigenDStride(2 * m.outerStride(), m.innerStride()));
 | ||
|         },
 | ||
|         py::return_value_policy::reference);
 | ||
| 
 | ||
|     // Returns diagonals: a vector-like object with an inner stride != 1
 | ||
|     m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); });
 | ||
|     m.def("diagonal_1",
 | ||
|           [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); });
 | ||
|     m.def("diagonal_n",
 | ||
|           [](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); });
 | ||
| 
 | ||
|     // Return a block of a matrix (gives non-standard strides)
 | ||
|     m.def("block",
 | ||
|           [m](const py::object &x_obj,
 | ||
|               int start_row,
 | ||
|               int start_col,
 | ||
|               int block_rows,
 | ||
|               int block_cols) {
 | ||
|               return m.attr("_block")(x_obj, x_obj, start_row, start_col, block_rows, block_cols);
 | ||
|           });
 | ||
| 
 | ||
|     m.def(
 | ||
|         "_block",
 | ||
|         [](const py::object &x_obj,
 | ||
|            const Eigen::Ref<const Eigen::MatrixXd> &x,
 | ||
|            int start_row,
 | ||
|            int start_col,
 | ||
|            int block_rows,
 | ||
|            int block_cols) {
 | ||
|             // See PR #4217 for background. This test is a bit over the top, but might be useful
 | ||
|             // as a concrete example to point to when explaining the dangling reference trap.
 | ||
|             auto i0 = py::make_tuple(0, 0);
 | ||
|             auto x0_orig = x_obj[*i0].cast<double>();
 | ||
|             if (x(0, 0) != x0_orig) {
 | ||
|                 throw std::runtime_error(
 | ||
|                     "Something in the type_caster for Eigen::Ref is terribly wrong.");
 | ||
|             }
 | ||
|             double x0_mod = x0_orig + 1;
 | ||
|             x_obj[*i0] = x0_mod;
 | ||
|             auto copy_detected = (x(0, 0) != x0_mod);
 | ||
|             x_obj[*i0] = x0_orig;
 | ||
|             if (copy_detected) {
 | ||
|                 throw std::runtime_error("type_caster for Eigen::Ref made a copy.");
 | ||
|             }
 | ||
|             return x.block(start_row, start_col, block_rows, block_cols);
 | ||
|         },
 | ||
|         py::keep_alive<0, 1>());
 | ||
| 
 | ||
|     // test_eigen_return_references, test_eigen_keepalive
 | ||
|     // return value referencing/copying tests:
 | ||
|     class ReturnTester {
 | ||
|         Eigen::MatrixXd mat = create();
 | ||
| 
 | ||
|     public:
 | ||
|         ReturnTester() { print_created(this); }
 | ||
|         ~ReturnTester() { print_destroyed(this); }
 | ||
|         static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); }
 | ||
|         // NOLINTNEXTLINE(readability-const-return-type)
 | ||
|         static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); }
 | ||
|         Eigen::MatrixXd &get() { return mat; }
 | ||
|         Eigen::MatrixXd *getPtr() { return &mat; }
 | ||
|         const Eigen::MatrixXd &view() { return mat; }
 | ||
|         const Eigen::MatrixXd *viewPtr() { return &mat; }
 | ||
|         Eigen::Ref<Eigen::MatrixXd> ref() { return mat; }
 | ||
|         Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; }
 | ||
|         Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) {
 | ||
|             return mat.block(r, c, nrow, ncol);
 | ||
|         }
 | ||
|         Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const {
 | ||
|             return mat.block(r, c, nrow, ncol);
 | ||
|         }
 | ||
|         py::EigenDMap<Eigen::Matrix2d> corners() {
 | ||
|             return py::EigenDMap<Eigen::Matrix2d>(
 | ||
|                 mat.data(),
 | ||
|                 py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
 | ||
|                                  mat.innerStride() * (mat.innerSize() - 1)));
 | ||
|         }
 | ||
|         py::EigenDMap<const Eigen::Matrix2d> cornersConst() const {
 | ||
|             return py::EigenDMap<const Eigen::Matrix2d>(
 | ||
|                 mat.data(),
 | ||
|                 py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
 | ||
|                                  mat.innerStride() * (mat.innerSize() - 1)));
 | ||
|         }
 | ||
|     };
 | ||
|     using rvp = py::return_value_policy;
 | ||
|     py::class_<ReturnTester>(m, "ReturnTester")
 | ||
|         .def(py::init<>())
 | ||
|         .def_static("create", &ReturnTester::create)
 | ||
|         .def_static("create_const", &ReturnTester::createConst)
 | ||
|         .def("get", &ReturnTester::get, rvp::reference_internal)
 | ||
|         .def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal)
 | ||
|         .def("view", &ReturnTester::view, rvp::reference_internal)
 | ||
|         .def("view_ptr", &ReturnTester::view, rvp::reference_internal)
 | ||
|         .def("copy_get", &ReturnTester::get)       // Default rvp: copy
 | ||
|         .def("copy_view", &ReturnTester::view)     //         "
 | ||
|         .def("ref", &ReturnTester::ref)            // Default for Ref is to reference
 | ||
|         .def("ref_const", &ReturnTester::refConst) // Likewise, but const
 | ||
|         .def("ref_safe", &ReturnTester::ref, rvp::reference_internal)
 | ||
|         .def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal)
 | ||
|         .def("copy_ref", &ReturnTester::ref, rvp::copy)
 | ||
|         .def("copy_ref_const", &ReturnTester::refConst, rvp::copy)
 | ||
|         .def("block", &ReturnTester::block)
 | ||
|         .def("block_safe", &ReturnTester::block, rvp::reference_internal)
 | ||
|         .def("block_const", &ReturnTester::blockConst, rvp::reference_internal)
 | ||
|         .def("copy_block", &ReturnTester::block, rvp::copy)
 | ||
|         .def("corners", &ReturnTester::corners, rvp::reference_internal)
 | ||
|         .def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal);
 | ||
| 
 | ||
|     // test_special_matrix_objects
 | ||
|     // Returns a DiagonalMatrix with diagonal (1,2,3,...)
 | ||
|     m.def("incr_diag", [](int k) {
 | ||
|         Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k);
 | ||
|         for (int i = 0; i < k; i++) {
 | ||
|             m.diagonal()[i] = i + 1;
 | ||
|         }
 | ||
|         return m;
 | ||
|     });
 | ||
| 
 | ||
|     // Returns a SelfAdjointView referencing the lower triangle of m
 | ||
|     m.def("symmetric_lower",
 | ||
|           [](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Lower>(); });
 | ||
|     // Returns a SelfAdjointView referencing the lower triangle of m
 | ||
|     m.def("symmetric_upper",
 | ||
|           [](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Upper>(); });
 | ||
| 
 | ||
|     // Test matrix for various functions below.
 | ||
|     Eigen::MatrixXf mat(5, 6);
 | ||
|     mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14,
 | ||
|         0, 8, 11;
 | ||
| 
 | ||
|     // test_fixed, and various other tests
 | ||
|     m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); });
 | ||
|     // Our Eigen does a hack which respects constness through the numpy writeable flag.
 | ||
|     // Therefore, the const return actually affects this type despite being an rvalue.
 | ||
|     // NOLINTNEXTLINE(readability-const-return-type)
 | ||
|     m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); });
 | ||
|     m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); });
 | ||
|     m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; });
 | ||
|     m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; });
 | ||
|     // test_mutator_descriptors
 | ||
|     m.def("fixed_mutator_r", [](const Eigen::Ref<FixedMatrixR> &) {});
 | ||
|     m.def("fixed_mutator_c", [](const Eigen::Ref<FixedMatrixC> &) {});
 | ||
|     m.def("fixed_mutator_a", [](const py::EigenDRef<FixedMatrixC> &) {});
 | ||
|     // test_dense
 | ||
|     m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); });
 | ||
|     m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); });
 | ||
|     m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; });
 | ||
|     m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; });
 | ||
|     // test_defaults
 | ||
|     bool have_numpy = true;
 | ||
|     try {
 | ||
|         py::module_::import("numpy");
 | ||
|     } catch (const py::error_already_set &) {
 | ||
|         have_numpy = false;
 | ||
|     }
 | ||
|     if (have_numpy) {
 | ||
|         py::module_::import("numpy");
 | ||
|         Eigen::Matrix<double, 3, 3> defaultMatrix = Eigen::Matrix3d::Identity();
 | ||
|         m.def("defaults_mat", [](const Eigen::Matrix3d &) {}, py::arg("mat") = defaultMatrix);
 | ||
| 
 | ||
|         Eigen::VectorXd defaultVector = Eigen::VectorXd::Ones(32);
 | ||
|         m.def("defaults_vec", [](const Eigen::VectorXd &) {}, py::arg("vec") = defaultMatrix);
 | ||
|     }
 | ||
|     // test_sparse, test_sparse_signature
 | ||
|     m.def("sparse_r", [mat]() -> SparseMatrixR {
 | ||
|         // NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
 | ||
|         return Eigen::SparseView<Eigen::MatrixXf>(mat);
 | ||
|     });
 | ||
|     m.def("sparse_c",
 | ||
|           [mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); });
 | ||
|     m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; });
 | ||
|     m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; });
 | ||
|     // test_partially_fixed
 | ||
|     m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; });
 | ||
|     m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; });
 | ||
|     m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; });
 | ||
|     m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; });
 | ||
| 
 | ||
|     // test_cpp_casting
 | ||
|     // Test that we can cast a numpy object to a Eigen::MatrixXd explicitly
 | ||
|     m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); });
 | ||
|     m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); });
 | ||
|     m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); });
 | ||
|     m.def("cpp_ref_any",
 | ||
|           [](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); });
 | ||
| 
 | ||
|     // [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works.
 | ||
| 
 | ||
|     // test_nocopy_wrapper
 | ||
|     // Test that we can prevent copying into an argument that would normally copy: First a version
 | ||
|     // that would allow copying (if types or strides don't match) for comparison:
 | ||
|     m.def("get_elem", &get_elem);
 | ||
|     // Now this alternative that calls the tells pybind to fail rather than copy:
 | ||
|     m.def(
 | ||
|         "get_elem_nocopy",
 | ||
|         [](const Eigen::Ref<const Eigen::MatrixXd> &m) -> double { return get_elem(m); },
 | ||
|         py::arg{}.noconvert());
 | ||
|     // Also test a row-major-only no-copy const ref:
 | ||
|     m.def(
 | ||
|         "get_elem_rm_nocopy",
 | ||
|         [](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long {
 | ||
|             return m(2, 1);
 | ||
|         },
 | ||
|         py::arg{}.noconvert());
 | ||
| 
 | ||
|     // test_issue738, test_zero_length
 | ||
|     // Issue #738: 1×N or N×1 2D matrices were neither accepted nor properly copied with an
 | ||
|     // incompatible stride value on the length-1 dimension--but that should be allowed (without
 | ||
|     // requiring a copy!) because the stride value can be safely ignored on a size-1 dimension.
 | ||
|     // Similarly, 0×N or N×0 matrices were not accepted--again, these should be allowed since
 | ||
|     // they contain no data. This particularly affects numpy ≥ 1.23, which sets the strides to
 | ||
|     // 0 if any dimension size is 0.
 | ||
|     m.def("iss738_f1",
 | ||
|           &adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>,
 | ||
|           py::arg{}.noconvert());
 | ||
|     m.def("iss738_f2",
 | ||
|           &adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>,
 | ||
|           py::arg{}.noconvert());
 | ||
| 
 | ||
|     // test_issue1105
 | ||
|     // Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense
 | ||
|     // eigen Vector or RowVector, the argument would fail to load because the numpy copy would
 | ||
|     // fail: numpy won't broadcast a Nx1 into a 1-dimensional vector.
 | ||
|     m.def("iss1105_col", [](const Eigen::VectorXd &) { return true; });
 | ||
|     m.def("iss1105_row", [](const Eigen::RowVectorXd &) { return true; });
 | ||
| 
 | ||
|     // test_named_arguments
 | ||
|     // Make sure named arguments are working properly:
 | ||
|     m.def(
 | ||
|         "matrix_multiply",
 | ||
|         [](const py::EigenDRef<const Eigen::MatrixXd> &A,
 | ||
|            const py::EigenDRef<const Eigen::MatrixXd> &B) -> Eigen::MatrixXd {
 | ||
|             if (A.cols() != B.rows()) {
 | ||
|                 throw std::domain_error("Nonconformable matrices!");
 | ||
|             }
 | ||
|             return A * B;
 | ||
|         },
 | ||
|         py::arg("A"),
 | ||
|         py::arg("B"));
 | ||
| 
 | ||
|     // test_custom_operator_new
 | ||
|     py::class_<CustomOperatorNew>(m, "CustomOperatorNew")
 | ||
|         .def(py::init<>())
 | ||
|         .def_readonly("a", &CustomOperatorNew::a)
 | ||
|         .def_readonly("b", &CustomOperatorNew::b);
 | ||
| 
 | ||
|     // test_eigen_ref_life_support
 | ||
|     // In case of a failure (the caster's temp array does not live long enough), creating
 | ||
|     // a new array (np.ones(10)) increases the chances that the temp array will be garbage
 | ||
|     // collected and/or that its memory will be overridden with different values.
 | ||
|     m.def("get_elem_direct", [](const Eigen::Ref<const Eigen::VectorXd> &v) {
 | ||
|         py::module_::import("numpy").attr("ones")(10);
 | ||
|         return v(5);
 | ||
|     });
 | ||
|     m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) {
 | ||
|         py::module_::import("numpy").attr("ones")(10);
 | ||
|         return v[0](5);
 | ||
|     });
 | ||
| }
 |