1114 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1114 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  TestSmartStereoProjectionPoseFactor.cpp
 | |
|  *  @brief Unit tests for ProjectionFactor Class
 | |
|  *  @author Chris Beall
 | |
|  *  @author Luca Carlone
 | |
|  *  @author Zsolt Kira
 | |
|  *  @date   Sept 2013
 | |
|  */
 | |
| 
 | |
| // TODO #include <gtsam/slam/tests/smartFactorScenarios.h>
 | |
| #include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/slam/PoseTranslationPrior.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam/slam/StereoFactor.h>
 | |
| #include <boost/assign/std/vector.hpp>
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace boost::assign;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // make a realistic calibration matrix
 | |
| static double fov = 60; // degrees
 | |
| static size_t w = 640, h = 480;
 | |
| static double b = 1;
 | |
| 
 | |
| static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
 | |
| static Cal3_S2Stereo::shared_ptr K2(
 | |
|     new Cal3_S2Stereo(1500, 1200, 0, 640, 480, b));
 | |
| 
 | |
| 
 | |
| static SmartStereoProjectionParams params;
 | |
| 
 | |
| // static bool manageDegeneracy = true;
 | |
| // Create a noise model for the pixel error
 | |
| static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| // tests data
 | |
| static Symbol x1('X', 1);
 | |
| static Symbol x2('X', 2);
 | |
| static Symbol x3('X', 3);
 | |
| 
 | |
| static Key poseKey1(x1);
 | |
| static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more reasonable measurement value?
 | |
| static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
 | |
|     Point3(0.25, -0.10, 1.0));
 | |
| 
 | |
| vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
 | |
|     const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
 | |
| 
 | |
|   vector<StereoPoint2> measurements_cam;
 | |
| 
 | |
|   StereoPoint2 cam1_uv1 = cam1.project(landmark);
 | |
|   StereoPoint2 cam2_uv1 = cam2.project(landmark);
 | |
|   StereoPoint2 cam3_uv1 = cam3.project(landmark);
 | |
|   measurements_cam.push_back(cam1_uv1);
 | |
|   measurements_cam.push_back(cam2_uv1);
 | |
|   measurements_cam.push_back(cam3_uv1);
 | |
| 
 | |
|   return measurements_cam;
 | |
| }
 | |
| 
 | |
| LevenbergMarquardtParams lm_params;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartStereoProjectionPoseFactor, Constructor) {
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartStereoProjectionPoseFactor, Constructor2) {
 | |
|   SmartStereoProjectionPoseFactor factor1(model, params);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartStereoProjectionPoseFactor, Constructor3) {
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
 | |
|   factor1->add(measurement1, poseKey1, K);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartStereoProjectionPoseFactor, Constructor4) {
 | |
|   SmartStereoProjectionPoseFactor factor1(model, params);
 | |
|   factor1.add(measurement1, poseKey1, K);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartStereoProjectionPoseFactor, Equals ) {
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
 | |
|   factor1->add(measurement1, poseKey1, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr factor2(new SmartStereoProjectionPoseFactor(model));
 | |
|   factor2->add(measurement1, poseKey1, K);
 | |
| 
 | |
|   CHECK(assert_equal(*factor1, *factor2));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
 | |
|       Point3(0, 0, 1));
 | |
|   StereoCamera level_camera(level_pose, K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
 | |
|   StereoCamera level_camera_right(level_pose_right, K2);
 | |
| 
 | |
|   // landmark ~5 meters infront of camera
 | |
|   Point3 landmark(5, 0.5, 1.2);
 | |
| 
 | |
|   // 1. Project two landmarks into two cameras and triangulate
 | |
|   StereoPoint2 level_uv = level_camera.project(landmark);
 | |
|   StereoPoint2 level_uv_right = level_camera_right.project(landmark);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, level_pose_right);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor factor1(model);
 | |
|   factor1.add(level_uv, x1, K2);
 | |
|   factor1.add(level_uv_right, x2, K2);
 | |
| 
 | |
|   double actualError = factor1.error(values);
 | |
|   double expectedError = 0.0;
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::Cameras cameras = factor1.cameras(values);
 | |
|   double actualError2 = factor1.totalReprojectionError(cameras);
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
 | |
| 
 | |
|   // test vector of errors
 | |
|   //Vector actual = factor1.unwhitenedError(values);
 | |
|   //EXPECT(assert_equal(zero(4),actual,1e-8));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, noisy ) {
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
 | |
|       Point3(0, 0, 1));
 | |
|   StereoCamera level_camera(level_pose, K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
 | |
|   StereoCamera level_camera_right(level_pose_right, K2);
 | |
| 
 | |
|   // landmark ~5 meters infront of camera
 | |
|   Point3 landmark(5, 0.5, 1.2);
 | |
| 
 | |
|   // 1. Project two landmarks into two cameras and triangulate
 | |
|   StereoPoint2 pixelError(0.2, 0.2, 0);
 | |
|   StereoPoint2 level_uv = level_camera.project(landmark) + pixelError;
 | |
|   StereoPoint2 level_uv_right = level_camera_right.project(landmark);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
 | |
|       Point3(0.5, 0.1, 0.3));
 | |
|   values.insert(x2, level_pose_right.compose(noise_pose));
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
 | |
|   factor1->add(level_uv, x1, K);
 | |
|   factor1->add(level_uv_right, x2, K);
 | |
| 
 | |
|   double actualError1 = factor1->error(values);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr factor2(new SmartStereoProjectionPoseFactor(model));
 | |
|   vector<StereoPoint2> measurements;
 | |
|   measurements.push_back(level_uv);
 | |
|   measurements.push_back(level_uv_right);
 | |
| 
 | |
|   vector<boost::shared_ptr<Cal3_S2Stereo> > Ks; ///< shared pointer to calibration object (one for each camera)
 | |
|   Ks.push_back(K);
 | |
|   Ks.push_back(K);
 | |
| 
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
| 
 | |
|   factor2->add(measurements, views, Ks);
 | |
| 
 | |
|   double actualError2 = factor2->error(values);
 | |
| 
 | |
|   DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | |
|   StereoCamera cam1(pose1, K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
 | |
|   StereoCamera cam2(pose2, K2);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
 | |
|   StereoCamera cam3(pose3, K2);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark1);
 | |
|   vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark2);
 | |
|   vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark3);
 | |
| 
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   SmartStereoProjectionParams smart_params;
 | |
|   smart_params.triangulation.enableEPI = true;
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, smart_params));
 | |
|   smartFactor1->add(measurements_l1, views, K2);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, smart_params));
 | |
|   smartFactor2->add(measurements_l2, views, K2);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, smart_params));
 | |
|   smartFactor3->add(measurements_l3, views, K2);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
| 
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|       Point3(0.1, 0.1, 0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3 * noise_pose);
 | |
|   EXPECT(
 | |
|       assert_equal(
 | |
|           Pose3(
 | |
|               Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
 | |
|                   -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
 | |
|               Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
 | |
| 
 | |
|   //  cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
 | |
|   EXPECT_DOUBLES_EQUAL(797312.95069157204, graph.error(values), 1e-7);
 | |
| 
 | |
|   // get triangulated landmarks from smart factors
 | |
|   Point3 landmark1_smart = *smartFactor1->point();
 | |
|   Point3 landmark2_smart = *smartFactor2->point();
 | |
|   Point3 landmark3_smart = *smartFactor3->point();
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartStereoProjectionPoseFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartStereoProjectionPoseFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
|   EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
 | |
| 
 | |
| //  cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
 | |
| 
 | |
|   GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
 | |
|   VectorValues delta = GFG->optimize();
 | |
|   VectorValues expected = VectorValues::Zero(delta);
 | |
|   EXPECT(assert_equal(expected, delta, 1e-6));
 | |
| 
 | |
|   // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
 | |
| 
 | |
|   /* ***************************************************************
 | |
|    * Same problem with regular Stereo factors, expect same error!
 | |
|    * ****************************************************************/
 | |
| 
 | |
| //  landmark1_smart.print("landmark1_smart");
 | |
| //  landmark2_smart.print("landmark2_smart");
 | |
| //  landmark3_smart.print("landmark3_smart");
 | |
| 
 | |
|   // add landmarks to values
 | |
|   values.insert(L(1), landmark1_smart);
 | |
|   values.insert(L(2), landmark2_smart);
 | |
|   values.insert(L(3), landmark3_smart);
 | |
| 
 | |
|   // add factors
 | |
|   NonlinearFactorGraph graph2;
 | |
| 
 | |
|   graph2.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph2.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
 | |
| 
 | |
|   bool verboseCheirality = true;
 | |
| 
 | |
|   graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality));
 | |
|   graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality));
 | |
|   graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality));
 | |
| 
 | |
|   graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality));
 | |
|   graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality));
 | |
|   graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality));
 | |
| 
 | |
|   graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality));
 | |
|   graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality));
 | |
|   graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
 | |
| 
 | |
| //  cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
 | |
|   EXPECT_DOUBLES_EQUAL(797312.95069157204, graph2.error(values), 1e-7);
 | |
| 
 | |
|   LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
 | |
|   Values result2 = optimizer2.optimize();
 | |
|   EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
 | |
| 
 | |
| //  cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
 | |
| 
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | |
|   StereoCamera cam1(pose1, K);
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
 | |
|   StereoCamera cam2(pose2, K);
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
 | |
|   StereoCamera cam3(pose3, K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark1);
 | |
|   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark2);
 | |
|   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark3);
 | |
| 
 | |
|   SmartStereoProjectionParams params;
 | |
|   params.setLinearizationMode(JACOBIAN_SVD);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor1( new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor1->add(measurements_cam1, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor2->add(measurements_cam2, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor3->add(measurements_cam3, views, K);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|       Point3(0.1, 0.1, 0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3 * noise_pose);
 | |
| 
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
 | |
| 
 | |
| //  double excludeLandmarksFutherThanDist = 2;
 | |
| 
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | |
|   StereoCamera cam1(pose1, K);
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
 | |
|   StereoCamera cam2(pose2, K);
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
 | |
|   StereoCamera cam3(pose3, K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark1);
 | |
|   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark2);
 | |
|   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark3);
 | |
| 
 | |
|   SmartStereoProjectionParams params;
 | |
|   params.setLinearizationMode(JACOBIAN_SVD);
 | |
|   params.setLandmarkDistanceThreshold(2);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor1->add(measurements_cam1, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor2->add(measurements_cam2, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor3->add(measurements_cam3, views, K);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|       Point3(0.1, 0.1, 0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3 * noise_pose);
 | |
| 
 | |
|   // All factors are disabled and pose should remain where it is
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
 | |
| 
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | |
|   StereoCamera cam1(pose1, K);
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
 | |
|   StereoCamera cam2(pose2, K);
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
 | |
|   StereoCamera cam3(pose3, K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
|   Point3 landmark4(5, -0.5, 1);
 | |
| 
 | |
|   // 1. Project four landmarks into three cameras and triangulate
 | |
|   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark1);
 | |
|   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark2);
 | |
|   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark3);
 | |
|   vector<StereoPoint2> measurements_cam4 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark4);
 | |
| 
 | |
|   measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10, 10, 1); // add outlier
 | |
| 
 | |
|   SmartStereoProjectionParams params;
 | |
|   params.setLinearizationMode(JACOBIAN_SVD);
 | |
|   params.setDynamicOutlierRejectionThreshold(1);
 | |
| 
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor1->add(measurements_cam1, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor2->add(measurements_cam2, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor3->add(measurements_cam3, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor4(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor4->add(measurements_cam4, views, K);
 | |
| 
 | |
|   // same as factor 4, but dynamic outlier rejection is off
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor4b(new SmartStereoProjectionPoseFactor(model));
 | |
|   smartFactor4b->add(measurements_cam4, views, K);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(smartFactor4);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|       Point3(0.1, 0.1, 0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3);
 | |
| 
 | |
|   EXPECT_DOUBLES_EQUAL(0, smartFactor1->error(values), 1e-9);
 | |
|   EXPECT_DOUBLES_EQUAL(0, smartFactor2->error(values), 1e-9);
 | |
|   EXPECT_DOUBLES_EQUAL(0, smartFactor3->error(values), 1e-9);
 | |
|   // zero error due to dynamic outlier rejection
 | |
|   EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
 | |
| 
 | |
|   // dynamic outlier rejection is off
 | |
|   EXPECT_DOUBLES_EQUAL(6700, smartFactor4b->error(values), 1e-9);
 | |
| 
 | |
|   // Factors 1-3 should have valid point, factor 4 should not
 | |
|   EXPECT(smartFactor1->point());
 | |
|   EXPECT(smartFactor2->point());
 | |
|   EXPECT(smartFactor3->point());
 | |
|   EXPECT(smartFactor4->point().degenerate());
 | |
|   EXPECT(smartFactor4b->point());
 | |
| 
 | |
|   // Factor 4 is disabled, pose 3 stays put
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
 | |
| }
 | |
| //
 | |
| ///* *************************************************************************/
 | |
| //TEST( SmartStereoProjectionPoseFactor, jacobianQ ){
 | |
| //
 | |
| //  vector<Key> views;
 | |
| //  views.push_back(x1);
 | |
| //  views.push_back(x2);
 | |
| //  views.push_back(x3);
 | |
| //
 | |
| //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
| //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
 | |
| //  StereoCamera cam1(pose1, K);
 | |
| //  // create second camera 1 meter to the right of first camera
 | |
| //  Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
| //  StereoCamera cam2(pose2, K);
 | |
| //  // create third camera 1 meter above the first camera
 | |
| //  Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
| //  StereoCamera cam3(pose3, K);
 | |
| //
 | |
| //  // three landmarks ~5 meters infront of camera
 | |
| //  Point3 landmark1(5, 0.5, 1.2);
 | |
| //  Point3 landmark2(5, -0.5, 1.2);
 | |
| //  Point3 landmark3(3, 0, 3.0);
 | |
| //
 | |
| //  vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| //
 | |
| //  // 1. Project three landmarks into three cameras and triangulate
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
 | |
| //  smartFactor1->add(measurements_cam1, views, model, K);
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
 | |
| //  smartFactor2->add(measurements_cam2, views, model, K);
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
 | |
| //  smartFactor3->add(measurements_cam3, views, model, K);
 | |
| //
 | |
| //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| //
 | |
| //  NonlinearFactorGraph graph;
 | |
| //  graph.push_back(smartFactor1);
 | |
| //  graph.push_back(smartFactor2);
 | |
| //  graph.push_back(smartFactor3);
 | |
| //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
| //  graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| //
 | |
| //  //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
| //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
 | |
| //  Values values;
 | |
| //  values.insert(x1, pose1);
 | |
| //  values.insert(x2, pose2);
 | |
| //  values.insert(x3, pose3*noise_pose);
 | |
| //
 | |
| ////  Values result;
 | |
| //  LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
| //  result = optimizer.optimize();
 | |
| //  EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
| //}
 | |
| //
 | |
| ///* *************************************************************************/
 | |
| //TEST( SmartStereoProjectionPoseFactor, 3poses_projection_factor ){
 | |
| //
 | |
| //  vector<Key> views;
 | |
| //  views.push_back(x1);
 | |
| //  views.push_back(x2);
 | |
| //  views.push_back(x3);
 | |
| //
 | |
| //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
| //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
 | |
| //  StereoCamera cam1(pose1, K2);
 | |
| //
 | |
| //  // create second camera 1 meter to the right of first camera
 | |
| //  Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
| //  StereoCamera cam2(pose2, K2);
 | |
| //
 | |
| //  // create third camera 1 meter above the first camera
 | |
| //  Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
| //  StereoCamera cam3(pose3, K2);
 | |
| //
 | |
| //  // three landmarks ~5 meters infront of camera
 | |
| //  Point3 landmark1(5, 0.5, 1.2);
 | |
| //  Point3 landmark2(5, -0.5, 1.2);
 | |
| //  Point3 landmark3(3, 0, 3.0);
 | |
| //
 | |
| //  typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
 | |
| //  NonlinearFactorGraph graph;
 | |
| //
 | |
| //  // 1. Project three landmarks into three cameras and triangulate
 | |
| //  graph.push_back(ProjectionFactor(cam1.project(landmark1), model, x1, L(1), K2));
 | |
| //  graph.push_back(ProjectionFactor(cam2.project(landmark1), model, x2, L(1), K2));
 | |
| //  graph.push_back(ProjectionFactor(cam3.project(landmark1), model, x3, L(1), K2));
 | |
| //
 | |
| //  graph.push_back(ProjectionFactor(cam1.project(landmark2), model, x1, L(2), K2));
 | |
| //  graph.push_back(ProjectionFactor(cam2.project(landmark2), model, x2, L(2), K2));
 | |
| //  graph.push_back(ProjectionFactor(cam3.project(landmark2), model, x3, L(2), K2));
 | |
| //
 | |
| //  graph.push_back(ProjectionFactor(cam1.project(landmark3), model, x1, L(3), K2));
 | |
| //  graph.push_back(ProjectionFactor(cam2.project(landmark3), model, x2, L(3), K2));
 | |
| //  graph.push_back(ProjectionFactor(cam3.project(landmark3), model, x3, L(3), K2));
 | |
| //
 | |
| //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
| //  graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| //
 | |
| //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
 | |
| //  Values values;
 | |
| //  values.insert(x1, pose1);
 | |
| //  values.insert(x2, pose2);
 | |
| //  values.insert(x3, pose3* noise_pose);
 | |
| //  values.insert(L(1), landmark1);
 | |
| //  values.insert(L(2), landmark2);
 | |
| //  values.insert(L(3), landmark3);
 | |
| //
 | |
| //  LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
| //  Values result = optimizer.optimize();
 | |
| //
 | |
| //  EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
| //}
 | |
| //
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
 | |
| 
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | |
|   StereoCamera cam1(pose1, K);
 | |
| 
 | |
|   // create second camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
 | |
|   StereoCamera cam2(pose2, K);
 | |
| 
 | |
|   // create third camera
 | |
|   Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
 | |
|   StereoCamera cam3(pose3, K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   // Project three landmarks into three cameras and triangulate
 | |
|   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark1);
 | |
|   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark2);
 | |
|   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark3);
 | |
| 
 | |
|   SmartStereoProjectionParams params;
 | |
|   params.setRankTolerance(10);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor1->add(measurements_cam1, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor2->add(measurements_cam2, views, K);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
 | |
|   smartFactor3->add(measurements_cam3, views, K);
 | |
| 
 | |
|   // Create graph to optimize
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|       Point3(0.1, 0.1, 0.1)); // smaller noise
 | |
|   values.insert(x3, pose3 * noise_pose);
 | |
| 
 | |
|   // TODO: next line throws Cheirality exception on Mac
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(
 | |
|       values);
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor2 = smartFactor2->linearize(
 | |
|       values);
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor3 = smartFactor3->linearize(
 | |
|       values);
 | |
| 
 | |
|   Matrix CumulativeInformation = hessianFactor1->information()
 | |
|       + hessianFactor2->information() + hessianFactor3->information();
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
 | |
|       values);
 | |
|   Matrix GraphInformation = GaussianGraph->hessian().first;
 | |
| 
 | |
|   // Check Hessian
 | |
|   EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8));
 | |
| 
 | |
|   Matrix AugInformationMatrix = hessianFactor1->augmentedInformation()
 | |
|       + hessianFactor2->augmentedInformation()
 | |
|       + hessianFactor3->augmentedInformation();
 | |
| 
 | |
|   // Check Information vector
 | |
|   Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
 | |
| 
 | |
|   // Check Hessian
 | |
|   EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8));
 | |
| }
 | |
| //
 | |
| ///* *************************************************************************/
 | |
| //TEST( SmartStereoProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ){
 | |
| //
 | |
| //  vector<Key> views;
 | |
| //  views.push_back(x1);
 | |
| //  views.push_back(x2);
 | |
| //  views.push_back(x3);
 | |
| //
 | |
| //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
| //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
 | |
| //  StereoCamera cam1(pose1, K2);
 | |
| //
 | |
| //  // create second camera 1 meter to the right of first camera
 | |
| //  Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
| //  StereoCamera cam2(pose2, K2);
 | |
| //
 | |
| //  // create third camera 1 meter above the first camera
 | |
| //  Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
| //  StereoCamera cam3(pose3, K2);
 | |
| //
 | |
| //  // three landmarks ~5 meters infront of camera
 | |
| //  Point3 landmark1(5, 0.5, 1.2);
 | |
| //  Point3 landmark2(5, -0.5, 1.2);
 | |
| //
 | |
| //  vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| //
 | |
| //  // 1. Project three landmarks into three cameras and triangulate
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
| //
 | |
| //  double rankTol = 50;
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
 | |
| //  smartFactor1->add(measurements_cam1, views, model, K2);
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
 | |
| //  smartFactor2->add(measurements_cam2, views, model, K2);
 | |
| //
 | |
| //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| //  const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
 | |
| //  Point3 positionPrior = Point3(0,0,1);
 | |
| //
 | |
| //  NonlinearFactorGraph graph;
 | |
| //  graph.push_back(smartFactor1);
 | |
| //  graph.push_back(smartFactor2);
 | |
| //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
| //  graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
 | |
| //  graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
 | |
| //
 | |
| //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.1,0.1,0.1)); // smaller noise
 | |
| //  Values values;
 | |
| //  values.insert(x1, pose1);
 | |
| //  values.insert(x2, pose2*noise_pose);
 | |
| //  // initialize third pose with some noise, we expect it to move back to original pose3
 | |
| //  values.insert(x3, pose3*noise_pose*noise_pose);
 | |
| //
 | |
| //  Values result;
 | |
| //  gttic_(SmartStereoProjectionPoseFactor);
 | |
| //  LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
| //  result = optimizer.optimize();
 | |
| //  gttoc_(SmartStereoProjectionPoseFactor);
 | |
| //  tictoc_finishedIteration_();
 | |
| //
 | |
| //  // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
| //  // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
| //}
 | |
| //
 | |
| ///* *************************************************************************/
 | |
| //TEST( SmartStereoProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ){
 | |
| //
 | |
| //  vector<Key> views;
 | |
| //  views.push_back(x1);
 | |
| //  views.push_back(x2);
 | |
| //  views.push_back(x3);
 | |
| //
 | |
| //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
| //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
 | |
| //  StereoCamera cam1(pose1, K);
 | |
| //
 | |
| //  // create second camera 1 meter to the right of first camera
 | |
| //  Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
| //  StereoCamera cam2(pose2, K);
 | |
| //
 | |
| //  // create third camera 1 meter above the first camera
 | |
| //  Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
| //  StereoCamera cam3(pose3, K);
 | |
| //
 | |
| //  // three landmarks ~5 meters infront of camera
 | |
| //  Point3 landmark1(5, 0.5, 1.2);
 | |
| //  Point3 landmark2(5, -0.5, 1.2);
 | |
| //  Point3 landmark3(3, 0, 3.0);
 | |
| //
 | |
| //  vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| //
 | |
| //  // 1. Project three landmarks into three cameras and triangulate
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
| //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | |
| //
 | |
| //  double rankTol = 10;
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
 | |
| //  smartFactor1->add(measurements_cam1, views, model, K);
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
 | |
| //  smartFactor2->add(measurements_cam2, views, model, K);
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
 | |
| //  smartFactor3->add(measurements_cam3, views, model, K);
 | |
| //
 | |
| //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| //  const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
 | |
| //  Point3 positionPrior = Point3(0,0,1);
 | |
| //
 | |
| //  NonlinearFactorGraph graph;
 | |
| //  graph.push_back(smartFactor1);
 | |
| //  graph.push_back(smartFactor2);
 | |
| //  graph.push_back(smartFactor3);
 | |
| //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
| //  graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
 | |
| //  graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
 | |
| //
 | |
| //  //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
| //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
 | |
| //  Values values;
 | |
| //  values.insert(x1, pose1);
 | |
| //  values.insert(x2, pose2);
 | |
| //  // initialize third pose with some noise, we expect it to move back to original pose3
 | |
| //  values.insert(x3, pose3*noise_pose);
 | |
| //
 | |
| //  Values result;
 | |
| //  gttic_(SmartStereoProjectionPoseFactor);
 | |
| //  LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
 | |
| //  result = optimizer.optimize();
 | |
| //  gttoc_(SmartStereoProjectionPoseFactor);
 | |
| //  tictoc_finishedIteration_();
 | |
| //
 | |
| //  // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
| //  // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
| //}
 | |
| //
 | |
| ///* *************************************************************************/
 | |
| //TEST( SmartStereoProjectionPoseFactor, Hessian ){
 | |
| //
 | |
| //  vector<Key> views;
 | |
| //  views.push_back(x1);
 | |
| //  views.push_back(x2);
 | |
| //
 | |
| //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
| //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
 | |
| //  StereoCamera cam1(pose1, K2);
 | |
| //
 | |
| //  // create second camera 1 meter to the right of first camera
 | |
| //  Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
| //  StereoCamera cam2(pose2, K2);
 | |
| //
 | |
| //  // three landmarks ~5 meters infront of camera
 | |
| //  Point3 landmark1(5, 0.5, 1.2);
 | |
| //
 | |
| //  // 1. Project three landmarks into three cameras and triangulate
 | |
| //  StereoPoint2 cam1_uv1 = cam1.project(landmark1);
 | |
| //  StereoPoint2 cam2_uv1 = cam2.project(landmark1);
 | |
| //  vector<StereoPoint2> measurements_cam1;
 | |
| //  measurements_cam1.push_back(cam1_uv1);
 | |
| //  measurements_cam1.push_back(cam2_uv1);
 | |
| //
 | |
| //  SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor());
 | |
| //  smartFactor1->add(measurements_cam1,views, model, K2);
 | |
| //
 | |
| //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
 | |
| //  Values values;
 | |
| //  values.insert(x1, pose1);
 | |
| //  values.insert(x2, pose2);
 | |
| //
 | |
| //  boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(values);
 | |
| //
 | |
| //  // compute triangulation from linearization point
 | |
| //  // compute reprojection errors (sum squared)
 | |
| //  // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
 | |
| //  // check that it is correctly scaled when using noiseProjection = [1/4  0; 0 1/4]
 | |
| //}
 | |
| //
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | |
|   StereoCamera cam1(pose1, K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
 | |
|   StereoCamera cam2(pose2, K);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
 | |
|   StereoCamera cam3(pose3, K);
 | |
| 
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
| 
 | |
|   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark1);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactorInstance(new SmartStereoProjectionPoseFactor(model));
 | |
|   smartFactorInstance->add(measurements_cam1, views, K);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3);
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor =
 | |
|       smartFactorInstance->linearize(values);
 | |
|   // hessianFactor->print("Hessian factor \n");
 | |
| 
 | |
|   Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
 | |
| 
 | |
|   Values rotValues;
 | |
|   rotValues.insert(x1, poseDrift.compose(pose1));
 | |
|   rotValues.insert(x2, poseDrift.compose(pose2));
 | |
|   rotValues.insert(x3, poseDrift.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRot =
 | |
|       smartFactorInstance->linearize(rotValues);
 | |
|   // hessianFactorRot->print("Hessian factor \n");
 | |
| 
 | |
|   // Hessian is invariant to rotations in the nondegenerate case
 | |
|   EXPECT(
 | |
|       assert_equal(hessianFactor->information(),
 | |
|           hessianFactorRot->information(), 1e-7));
 | |
| 
 | |
|   Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
 | |
|       Point3(10, -4, 5));
 | |
| 
 | |
|   Values tranValues;
 | |
|   tranValues.insert(x1, poseDrift2.compose(pose1));
 | |
|   tranValues.insert(x2, poseDrift2.compose(pose2));
 | |
|   tranValues.insert(x3, poseDrift2.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
 | |
|       smartFactorInstance->linearize(tranValues);
 | |
| 
 | |
|   // Hessian is invariant to rotations and translations in the nondegenerate case
 | |
|   EXPECT(
 | |
|       assert_equal(hessianFactor->information(),
 | |
|           hessianFactorRotTran->information(), 1e-6));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
 | |
| 
 | |
|   vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | |
|   StereoCamera cam1(pose1, K2);
 | |
| 
 | |
|   // Second and third cameras in same place, which is a degenerate configuration
 | |
|   Pose3 pose2 = pose1;
 | |
|   Pose3 pose3 = pose1;
 | |
|   StereoCamera cam2(pose2, K2);
 | |
|   StereoCamera cam3(pose3, K2);
 | |
| 
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
| 
 | |
|   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
 | |
|       cam2, cam3, landmark1);
 | |
| 
 | |
|   SmartStereoProjectionPoseFactor::shared_ptr smartFactor(new SmartStereoProjectionPoseFactor(model));
 | |
|   smartFactor->add(measurements_cam1, views, K2);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3);
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
 | |
|       values);
 | |
| 
 | |
|   Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
 | |
| 
 | |
|   Values rotValues;
 | |
|   rotValues.insert(x1, poseDrift.compose(pose1));
 | |
|   rotValues.insert(x2, poseDrift.compose(pose2));
 | |
|   rotValues.insert(x3, poseDrift.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
 | |
|       rotValues);
 | |
| 
 | |
|   // Hessian is invariant to rotations in the nondegenerate case
 | |
|   EXPECT(
 | |
|       assert_equal(hessianFactor->information(),
 | |
|           hessianFactorRot->information(), 1e-6));
 | |
| 
 | |
|   Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
 | |
|       Point3(10, -4, 5));
 | |
| 
 | |
|   Values tranValues;
 | |
|   tranValues.insert(x1, poseDrift2.compose(pose1));
 | |
|   tranValues.insert(x2, poseDrift2.compose(pose2));
 | |
|   tranValues.insert(x3, poseDrift2.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
 | |
|       smartFactor->linearize(tranValues);
 | |
| 
 | |
|   // Hessian is invariant to rotations and translations in the nondegenerate case
 | |
|   EXPECT(
 | |
|       assert_equal(hessianFactor->information(),
 | |
|           hessianFactorRotTran->information(), 1e-6));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |