146 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    VisualISAM2Example.cpp
 | 
						|
 * @brief   A visualSLAM example for the structure-from-motion problem on a
 | 
						|
 * simulated dataset This version uses iSAM2 to solve the problem incrementally
 | 
						|
 * @author  Duy-Nguyen Ta
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * A structure-from-motion example with landmarks
 | 
						|
 *  - The landmarks form a 10 meter cube
 | 
						|
 *  - The robot rotates around the landmarks, always facing towards the cube
 | 
						|
 */
 | 
						|
 | 
						|
// For loading the data
 | 
						|
#include "SFMdata.h"
 | 
						|
 | 
						|
// Camera observations of landmarks will be stored as Point2 (x, y).
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
 | 
						|
// Each variable in the system (poses and landmarks) must be identified with a
 | 
						|
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
 | 
						|
// (X1, X2, L1). Here we will use Symbols
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
 | 
						|
// We want to use iSAM2 to solve the structure-from-motion problem
 | 
						|
// incrementally, so include iSAM2 here
 | 
						|
#include <gtsam/nonlinear/ISAM2.h>
 | 
						|
 | 
						|
// iSAM2 requires as input a set of new factors to be added stored in a factor
 | 
						|
// graph, and initial guesses for any new variables used in the added factors
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
 | 
						|
// In GTSAM, measurement functions are represented as 'factors'. Several common
 | 
						|
// factors have been provided with the library for solving robotics/SLAM/Bundle
 | 
						|
// Adjustment problems. Here we will use Projection factors to model the
 | 
						|
// camera's landmark observations. Also, we will initialize the robot at some
 | 
						|
// location using a Prior factor.
 | 
						|
#include <gtsam/slam/ProjectionFactor.h>
 | 
						|
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main(int argc, char* argv[]) {
 | 
						|
  // Define the camera calibration parameters
 | 
						|
  Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
 | 
						|
 | 
						|
  // Define the camera observation noise model, 1 pixel stddev
 | 
						|
  auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
 | 
						|
 | 
						|
  // Create the set of ground-truth landmarks
 | 
						|
  vector<Point3> points = createPoints();
 | 
						|
 | 
						|
  // Create the set of ground-truth poses
 | 
						|
  vector<Pose3> poses = createPoses();
 | 
						|
 | 
						|
  // Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
 | 
						|
  // to maintain proper linearization and efficient variable ordering, iSAM2
 | 
						|
  // performs partial relinearization/reordering at each step. A parameter
 | 
						|
  // structure is available that allows the user to set various properties, such
 | 
						|
  // as the relinearization threshold and type of linear solver. For this
 | 
						|
  // example, we we set the relinearization threshold small so the iSAM2 result
 | 
						|
  // will approach the batch result.
 | 
						|
  ISAM2Params parameters;
 | 
						|
  parameters.relinearizeThreshold = 0.01;
 | 
						|
  parameters.relinearizeSkip = 1;
 | 
						|
  ISAM2 isam(parameters);
 | 
						|
 | 
						|
  // Create a Factor Graph and Values to hold the new data
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
  Values initialEstimate;
 | 
						|
 | 
						|
  // Loop over the poses, adding the observations to iSAM incrementally
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i) {
 | 
						|
    // Add factors for each landmark observation
 | 
						|
    for (size_t j = 0; j < points.size(); ++j) {
 | 
						|
      PinholeCamera<Cal3_S2> camera(poses[i], *K);
 | 
						|
      Point2 measurement = camera.project(points[j]);
 | 
						|
      graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(
 | 
						|
          measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add an initial guess for the current pose
 | 
						|
    // Intentionally initialize the variables off from the ground truth
 | 
						|
    static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
 | 
						|
                            Point3(0.05, -0.10, 0.20));
 | 
						|
    initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose);
 | 
						|
 | 
						|
    // If this is the first iteration, add a prior on the first pose to set the
 | 
						|
    // coordinate frame and a prior on the first landmark to set the scale Also,
 | 
						|
    // as iSAM solves incrementally, we must wait until each is observed at
 | 
						|
    // least twice before adding it to iSAM.
 | 
						|
    if (i == 0) {
 | 
						|
      // Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
 | 
						|
      static auto kPosePrior = noiseModel::Diagonal::Sigmas(
 | 
						|
          (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3))
 | 
						|
              .finished());
 | 
						|
      graph.addPrior(Symbol('x', 0), poses[0], kPosePrior);
 | 
						|
 | 
						|
      // Add a prior on landmark l0
 | 
						|
      static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
 | 
						|
      graph.addPrior(Symbol('l', 0), points[0], kPointPrior);
 | 
						|
 | 
						|
      // Add initial guesses to all observed landmarks
 | 
						|
      // Intentionally initialize the variables off from the ground truth
 | 
						|
      static Point3 kDeltaPoint(-0.25, 0.20, 0.15);
 | 
						|
      for (size_t j = 0; j < points.size(); ++j)
 | 
						|
        initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint);
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Update iSAM with the new factors
 | 
						|
      isam.update(graph, initialEstimate);
 | 
						|
      // Each call to iSAM2 update(*) performs one iteration of the iterative
 | 
						|
      // nonlinear solver. If accuracy is desired at the expense of time,
 | 
						|
      // update(*) can be called additional times to perform multiple optimizer
 | 
						|
      // iterations every step.
 | 
						|
      isam.update();
 | 
						|
      Values currentEstimate = isam.calculateEstimate();
 | 
						|
      cout << "****************************************************" << endl;
 | 
						|
      cout << "Frame " << i << ": " << endl;
 | 
						|
      currentEstimate.print("Current estimate: ");
 | 
						|
 | 
						|
      // Clear the factor graph and values for the next iteration
 | 
						|
      graph.resize(0);
 | 
						|
      initialEstimate.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 |