83 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
/*
 | 
						|
 * SubgraphSolver-inl.h
 | 
						|
 *
 | 
						|
 *   Created on: Jan 17, 2010
 | 
						|
 *       Author: nikai
 | 
						|
 *  Description: subgraph preconditioning conjugate gradient solver
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <boost/tuple/tuple.hpp>
 | 
						|
#include "SubgraphSolver.h"
 | 
						|
 | 
						|
#include "graph-inl.h"
 | 
						|
#include "iterative-inl.h"
 | 
						|
#include "FactorGraph-inl.h"
 | 
						|
 | 
						|
using namespace std;
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
	/* ************************************************************************* */
 | 
						|
	template<class Graph, class Config>
 | 
						|
	SubgraphSolver<Graph, Config>::SubgraphSolver(const Graph& G, const Config& theta0) {
 | 
						|
		initialize(G,theta0);
 | 
						|
	}
 | 
						|
 | 
						|
	/* ************************************************************************* */
 | 
						|
	template<class Graph, class Config>
 | 
						|
	void SubgraphSolver<Graph, Config>::initialize(const Graph& G, const Config& theta0) {
 | 
						|
 | 
						|
		// generate spanning tree
 | 
						|
		PredecessorMap<Key> tree = G.template findMinimumSpanningTree<Key, Constraint>();
 | 
						|
		list<Key> keys = predecessorMap2Keys(tree);
 | 
						|
 | 
						|
		// split the graph
 | 
						|
		if (verbose_) cout << "generating spanning tree and split the graph ...";
 | 
						|
		G.template split<Key, Constraint>(tree, T_, C_);
 | 
						|
		if (verbose_) cout << T_.size() << " and " << C_.size() << " factors" << endl;
 | 
						|
 | 
						|
		// make the ordering
 | 
						|
		list<Symbol> symbols;
 | 
						|
		symbols.resize(keys.size());
 | 
						|
		std::transform(keys.begin(), keys.end(), symbols.begin(), key2symbol<Key>);
 | 
						|
		ordering_ = boost::shared_ptr<Ordering>(new Ordering(symbols));
 | 
						|
 | 
						|
		// compose the approximate solution
 | 
						|
		Key root = keys.back();
 | 
						|
		theta_bar_ = composePoses<Graph, Constraint, Pose, Config> (T_, tree, theta0[root]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* ************************************************************************* */
 | 
						|
	template<class Graph, class Config>
 | 
						|
	boost::shared_ptr<SubgraphPreconditioner> SubgraphSolver<Graph, Config>::linearize(const Graph& G, const Config& theta_bar) const {
 | 
						|
		SubgraphPreconditioner::sharedFG Ab1 = T_.linearize(theta_bar);
 | 
						|
		SubgraphPreconditioner::sharedFG Ab2 = C_.linearize(theta_bar);
 | 
						|
#ifdef TIMING
 | 
						|
		SubgraphPreconditioner::sharedBayesNet Rc1;
 | 
						|
		SubgraphPreconditioner::sharedConfig xbar;
 | 
						|
#else
 | 
						|
		GaussianFactorGraph sacrificialAb1 = *Ab1; // duplicate !!!!!
 | 
						|
		SubgraphPreconditioner::sharedBayesNet Rc1 = sacrificialAb1.eliminate_(*ordering_);
 | 
						|
		SubgraphPreconditioner::sharedConfig xbar = gtsam::optimize_(*Rc1);
 | 
						|
#endif
 | 
						|
		// TODO: there does not seem to be a good reason to have Ab1_
 | 
						|
		// It seems only be used to provide an ordering for creating sparse matrices
 | 
						|
		return boost::shared_ptr<SubgraphPreconditioner>(new SubgraphPreconditioner(Ab1, Ab2, Rc1, xbar));
 | 
						|
	}
 | 
						|
 | 
						|
	/* ************************************************************************* */
 | 
						|
	template<class Graph, class Config>
 | 
						|
	VectorConfig SubgraphSolver<Graph, Config>::optimize(SubgraphPreconditioner& system) const {
 | 
						|
		VectorConfig zeros = system.zero();
 | 
						|
 | 
						|
		// Solve the subgraph PCG
 | 
						|
		VectorConfig ybar = conjugateGradients<SubgraphPreconditioner, VectorConfig,
 | 
						|
				Errors> (system, zeros, verbose_, epsilon_, epsilon_abs_, maxIterations_);
 | 
						|
		VectorConfig xbar = system.x(ybar);
 | 
						|
		return xbar;
 | 
						|
	}
 | 
						|
 | 
						|
}
 |