152 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Matlab
		
	
	
		
			Executable File
		
	
			
		
		
	
	
			152 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Matlab
		
	
	
		
			Executable File
		
	
| import gtsam.*;
 | |
| disp('Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE (http://www.computervisiononline.com/dataset/kitti-vision-benchmark-suite)')
 | |
| 
 | |
| %% Read metadata and compute relative sensor pose transforms
 | |
| % IMU metadata
 | |
| disp('-- Reading sensor metadata')
 | |
| IMU_metadata = importdata(findExampleDataFile('KittiEquivBiasedImu_metadata.txt'));
 | |
| IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
 | |
| IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
 | |
|   IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
 | |
| if ~IMUinBody.equals(Pose3, 1e-5)
 | |
|   error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
 | |
| end
 | |
| 
 | |
| %% Read data
 | |
| disp('-- Reading sensor data from file')
 | |
| % IMU data
 | |
| IMU_data = importdata(findExampleDataFile('KittiEquivBiasedImu.txt'));
 | |
| IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
 | |
| imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
 | |
| [IMU_data.acc_omega] = deal(imum{:});
 | |
| clear imum
 | |
| 
 | |
| % GPS data
 | |
| GPS_data = importdata(findExampleDataFile('KittiGps_converted.txt'));
 | |
| GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2);
 | |
| for i = 1:numel(GPS_data)
 | |
|     GPS_data(i).Position = gtsam.Point3(GPS_data(i).X, GPS_data(i).Y, GPS_data(i).Z);
 | |
| end
 | |
| noiseModelGPS = noiseModel.Diagonal.Precisions([ [0;0;0]; 1.0/0.07 * [1;1;1] ]);
 | |
| firstGPSPose = 2;
 | |
| GPSskip = 10; % Skip this many GPS measurements each time
 | |
| 
 | |
| %% Get initial conditions for the estimated trajectory
 | |
| currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame)
 | |
| currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
 | |
| currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
 | |
| sigma_init_x = noiseModel.Isotropic.Precisions([ 0.0; 0.0; 0.0; 1; 1; 1 ]);
 | |
| sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
 | |
| sigma_init_b = noiseModel.Isotropic.Sigmas([ 0.100; 0.100; 0.100; 5.00e-05; 5.00e-05; 5.00e-05 ]);
 | |
| sigma_between_b = [ IMU_metadata.AccelerometerBiasSigma * ones(3,1); IMU_metadata.GyroscopeBiasSigma * ones(3,1) ];
 | |
| g = [0;0;-9.8];
 | |
| w_coriolis = [0;0;0];
 | |
| 
 | |
| IMU_params = PreintegrationParams(g);
 | |
| 
 | |
| IMU_params.setAccelerometerCovariance(IMU_metadata.AccelerometerSigma.^2 * eye(3));
 | |
| IMU_params.setGyroscopeCovariance(IMU_metadata.GyroscopeSigma.^2 * eye(3));
 | |
| IMU_params.setIntegrationCovariance(IMU_metadata.IntegrationSigma.^2 * eye(3));
 | |
| IMU_params.setOmegaCoriolis(w_coriolis);
 | |
| 
 | |
| %% Solver object
 | |
| isamParams = ISAM2Params;
 | |
| isamParams.setFactorization('CHOLESKY');
 | |
| isamParams.setRelinearizeSkip(10);
 | |
| isam = gtsam.ISAM2(isamParams);
 | |
| newFactors = NonlinearFactorGraph;
 | |
| newValues = Values;
 | |
| 
 | |
| %% Main loop:
 | |
| % (1) we read the measurements
 | |
| % (2) we create the corresponding factors in the graph
 | |
| % (3) we solve the graph to obtain and optimal estimate of robot trajectory
 | |
| IMUtimes = [IMU_data.Time];
 | |
| 
 | |
| disp('-- Starting main loop: inference is performed at each time step, but we plot trajectory every 10 steps')
 | |
| 
 | |
| for measurementIndex = firstGPSPose:length(GPS_data)
 | |
|   
 | |
|   % At each non=IMU measurement we initialize a new node in the graph
 | |
|   currentPoseKey = symbol('x',measurementIndex);
 | |
|   currentVelKey =  symbol('v',measurementIndex);
 | |
|   currentBiasKey = symbol('b',measurementIndex);
 | |
|   t = GPS_data(measurementIndex, 1).Time;
 | |
|      
 | |
|   if measurementIndex == firstGPSPose
 | |
|     %% Create initial estimate and prior on initial pose, velocity, and biases
 | |
|     newValues.insert(currentPoseKey, currentPoseGlobal);
 | |
|     newValues.insert(currentVelKey, currentVelocityGlobal);
 | |
|     newValues.insert(currentBiasKey, currentBias);
 | |
|     newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
 | |
|     newFactors.add(PriorFactorVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
 | |
|     newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
 | |
|   else
 | |
|     t_previous = GPS_data(measurementIndex-1, 1).Time;
 | |
|     %% Summarize IMU data between the previous GPS measurement and now
 | |
|     IMUindices = find(IMUtimes >= t_previous & IMUtimes <= t);
 | |
|         
 | |
|     currentSummarizedMeasurement = PreintegratedImuMeasurements(IMU_params,currentBias);
 | |
|     
 | |
|     for imuIndex = IMUindices
 | |
|       accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
 | |
|       omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
 | |
|       deltaT = IMU_data(imuIndex).dt;
 | |
|       currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
 | |
|     end
 | |
|     
 | |
|     % Create IMU factor
 | |
|     newFactors.add(ImuFactor( ...
 | |
|       currentPoseKey-1, currentVelKey-1, ...
 | |
|       currentPoseKey, currentVelKey, ...
 | |
|       currentBiasKey, currentSummarizedMeasurement));
 | |
| 
 | |
|     % Bias evolution as given in the IMU metadata
 | |
|     newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ...
 | |
|       noiseModel.Diagonal.Sigmas(sqrt(numel(IMUindices)) * sigma_between_b)));
 | |
| 
 | |
|     % Create GPS factor
 | |
|     GPSPose = Pose3(currentPoseGlobal.rotation, GPS_data(measurementIndex).Position);
 | |
|     if mod(measurementIndex, GPSskip) == 0
 | |
|       newFactors.add(PriorFactorPose3(currentPoseKey, GPSPose, noiseModelGPS));
 | |
|     end
 | |
| 
 | |
|     % Add initial value
 | |
|     newValues.insert(currentPoseKey, GPSPose);
 | |
|     newValues.insert(currentVelKey, currentVelocityGlobal);
 | |
|     newValues.insert(currentBiasKey, currentBias);
 | |
|     
 | |
|     % Update solver
 | |
|     % =======================================================================
 | |
|     % We accumulate 2*GPSskip GPS measurements before updating the solver at
 | |
|     % first so that the heading becomes observable.
 | |
|     if measurementIndex > firstGPSPose + 2*GPSskip
 | |
|       isam.update(newFactors, newValues);
 | |
|       newFactors = NonlinearFactorGraph;
 | |
|       newValues = Values;
 | |
| 
 | |
|       result = isam.calculateEstimate();
 | |
|       
 | |
|       if rem(measurementIndex,10)==0 % plot every 10 time steps
 | |
|         cla;
 | |
|         
 | |
|         plot3DTrajectory(result, 'g-');
 | |
|         title('Estimated trajectory using ISAM2 (IMU+GPS)')
 | |
|         xlabel('[m]')
 | |
|         ylabel('[m]')
 | |
|         zlabel('[m]')
 | |
|         axis equal
 | |
|         drawnow;
 | |
|       end
 | |
|       % =======================================================================
 | |
| 
 | |
|       currentPoseGlobal = result.atPose3(currentPoseKey);
 | |
|       currentVelocityGlobal = result.atVector(currentVelKey);
 | |
|       currentBias = result.atConstantBias(currentBiasKey);
 | |
|     end
 | |
|   end
 | |
|      
 | |
| end % end main loop
 | |
| 
 | |
| disp('-- Reached end of sensor data')
 |