528 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			528 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    BatchFixedLagSmoother.cpp
 | 
						|
 * @brief   An LM-based fixed-lag smoother.
 | 
						|
 *
 | 
						|
 * @author  Michael Kaess, Stephen Williams
 | 
						|
 * @date    Oct 14, 2012
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
 | 
						|
#include <gtsam/nonlinear/LinearContainerFactor.h>
 | 
						|
#include <gtsam/linear/GaussianJunctionTree.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/linear/GaussianFactor.h>
 | 
						|
#include <gtsam/inference/inference.h>
 | 
						|
#include <gtsam/base/debug.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
 | 
						|
  FixedLagSmoother::print(s, keyFormatter);
 | 
						|
  // TODO: What else to print?
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs, double tol) const {
 | 
						|
  const BatchFixedLagSmoother* e =  dynamic_cast<const BatchFixedLagSmoother*> (&rhs);
 | 
						|
  return e != NULL
 | 
						|
      && FixedLagSmoother::equals(*e, tol)
 | 
						|
      && factors_.equals(e->factors_, tol)
 | 
						|
      && theta_.equals(e->theta_, tol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta, const KeyTimestampMap& timestamps) {
 | 
						|
 | 
						|
  const bool debug = ISDEBUG("BatchFixedLagSmoother update");
 | 
						|
  if(debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::update() START" << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the new factors
 | 
						|
  insertFactors(newFactors);
 | 
						|
 | 
						|
  // Add the new variables
 | 
						|
  theta_.insert(newTheta);
 | 
						|
 | 
						|
  // Add new variables to the end of the ordering
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
 | 
						|
    ordering_.push_back(key_value.key);
 | 
						|
  }
 | 
						|
 | 
						|
  // Augment Delta
 | 
						|
  std::vector<size_t> dims;
 | 
						|
  dims.reserve(newTheta.size());
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
 | 
						|
    dims.push_back(key_value.value.dim());
 | 
						|
  }
 | 
						|
  delta_.append(dims);
 | 
						|
  for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
 | 
						|
    delta_[i].setZero();
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the Timestamps associated with the factor keys
 | 
						|
  updateKeyTimestampMap(timestamps);
 | 
						|
 | 
						|
  // Get current timestamp
 | 
						|
  double current_timestamp = getCurrentTimestamp();
 | 
						|
  if(debug) std::cout << "Current Timestamp: " << current_timestamp << std::endl;
 | 
						|
 | 
						|
  // Find the set of variables to be marginalized out
 | 
						|
  std::set<Key> marginalizableKeys = findKeysBefore(current_timestamp - smootherLag_);
 | 
						|
  if(debug) {
 | 
						|
    std::cout << "Marginalizable Keys: ";
 | 
						|
    BOOST_FOREACH(Key key, marginalizableKeys) {
 | 
						|
      std::cout << DefaultKeyFormatter(key) << " ";
 | 
						|
    }
 | 
						|
    std::cout << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reorder
 | 
						|
  reorder(marginalizableKeys);
 | 
						|
 | 
						|
  // Optimize
 | 
						|
  Result result;
 | 
						|
  if(theta_.size() > 0) {
 | 
						|
    result = optimize();
 | 
						|
  }
 | 
						|
 | 
						|
  // Marginalize out old variables.
 | 
						|
  if(marginalizableKeys.size() > 0) {
 | 
						|
    marginalize(marginalizableKeys);
 | 
						|
  }
 | 
						|
 | 
						|
  if(debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::update() FINISH" << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::insertFactors(const NonlinearFactorGraph& newFactors) {
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, newFactors) {
 | 
						|
    Index index;
 | 
						|
    // Insert the factor into an existing hole in the factor graph, if possible
 | 
						|
    if(availableSlots_.size() > 0) {
 | 
						|
      index = availableSlots_.front();
 | 
						|
      availableSlots_.pop();
 | 
						|
      factors_.replace(index, factor);
 | 
						|
    } else {
 | 
						|
      index = factors_.size();
 | 
						|
      factors_.push_back(factor);
 | 
						|
    }
 | 
						|
    // Update the FactorIndex
 | 
						|
    BOOST_FOREACH(Key key, *factor) {
 | 
						|
      factorIndex_[key].insert(index);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::removeFactors(const std::set<size_t>& deleteFactors) {
 | 
						|
  BOOST_FOREACH(size_t slot, deleteFactors) {
 | 
						|
    if(factors_.at(slot)) {
 | 
						|
      // Remove references to this factor from the FactorIndex
 | 
						|
      BOOST_FOREACH(Key key, *(factors_.at(slot))) {
 | 
						|
        factorIndex_[key].erase(slot);
 | 
						|
      }
 | 
						|
      // Remove the factor from the factor graph
 | 
						|
      factors_.remove(slot);
 | 
						|
      // Add the factor's old slot to the list of available slots
 | 
						|
      availableSlots_.push(slot);
 | 
						|
    } else {
 | 
						|
      // TODO: Throw an error??
 | 
						|
      std::cout << "Attempting to remove a factor from slot " << slot << ", but it is already NULL." << std::endl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::eraseKeys(const std::set<Key>& keys) {
 | 
						|
 | 
						|
  BOOST_FOREACH(Key key, keys) {
 | 
						|
    // Erase the key from the values
 | 
						|
    theta_.erase(key);
 | 
						|
 | 
						|
    // Erase the key from the factor index
 | 
						|
    factorIndex_.erase(key);
 | 
						|
 | 
						|
    // Erase the key from the set of linearized keys
 | 
						|
    if(linearKeys_.exists(key)) {
 | 
						|
      linearKeys_.erase(key);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  eraseKeyTimestampMap(keys);
 | 
						|
 | 
						|
  // Permute the ordering such that the removed keys are at the end.
 | 
						|
  // This is a prerequisite for removing them from several structures
 | 
						|
  std::vector<Index> toBack;
 | 
						|
  BOOST_FOREACH(Key key, keys) {
 | 
						|
    toBack.push_back(ordering_.at(key));
 | 
						|
  }
 | 
						|
  Permutation forwardPermutation = Permutation::PushToBack(toBack, ordering_.size());
 | 
						|
  ordering_.permuteInPlace(forwardPermutation);
 | 
						|
  delta_.permuteInPlace(forwardPermutation);
 | 
						|
 | 
						|
  // Remove marginalized keys from the ordering and delta
 | 
						|
  for(size_t i = 0; i < keys.size(); ++i) {
 | 
						|
    ordering_.pop_back();
 | 
						|
    delta_.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::reorder(const std::set<Key>& marginalizeKeys) {
 | 
						|
 | 
						|
  // Calculate a variable index
 | 
						|
  VariableIndex variableIndex(*factors_.symbolic(ordering_), ordering_.size());
 | 
						|
 | 
						|
  // COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
 | 
						|
  int group0 = 0;
 | 
						|
  int group1 = marginalizeKeys.size() > 0 ? 1 : 0;
 | 
						|
 | 
						|
  // Initialize all variables to group1
 | 
						|
  std::vector<int> cmember(variableIndex.size(), group1);
 | 
						|
 | 
						|
  // Set all of the marginalizeKeys to Group0
 | 
						|
  if(marginalizeKeys.size() > 0) {
 | 
						|
    BOOST_FOREACH(Key key, marginalizeKeys) {
 | 
						|
      cmember[ordering_.at(key)] = group0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate the permutation
 | 
						|
  Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex, cmember);
 | 
						|
 | 
						|
  // Permute the ordering, variable index, and deltas
 | 
						|
  ordering_.permuteInPlace(forwardPermutation);
 | 
						|
  delta_.permuteInPlace(forwardPermutation);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
 | 
						|
  // Create output result structure
 | 
						|
  Result result;
 | 
						|
  result.nonlinearVariables = theta_.size() - linearKeys_.size();
 | 
						|
  result.linearVariables = linearKeys_.size();
 | 
						|
 | 
						|
  // Set optimization parameters
 | 
						|
  double lambda = parameters_.lambdaInitial;
 | 
						|
  double lambdaFactor = parameters_.lambdaFactor;
 | 
						|
  double lambdaUpperBound = parameters_.lambdaUpperBound;
 | 
						|
  double lambdaLowerBound = 0.5 / parameters_.lambdaUpperBound;
 | 
						|
  size_t maxIterations = parameters_.maxIterations;
 | 
						|
  double relativeErrorTol = parameters_.relativeErrorTol;
 | 
						|
  double absoluteErrorTol = parameters_.absoluteErrorTol;
 | 
						|
  double errorTol = parameters_.errorTol;
 | 
						|
 | 
						|
  // Create a Values that holds the current evaluation point
 | 
						|
  Values evalpoint = theta_.retract(delta_, ordering_);
 | 
						|
  result.error = factors_.error(evalpoint);
 | 
						|
 | 
						|
  // Use a custom optimization loop so the linearization points can be controlled
 | 
						|
  double previousError;
 | 
						|
  VectorValues newDelta;
 | 
						|
  do {
 | 
						|
    previousError = result.error;
 | 
						|
 | 
						|
    // Do next iteration
 | 
						|
    gttic(optimizer_iteration);
 | 
						|
    {
 | 
						|
      // Linearize graph around the linearization point
 | 
						|
      GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
 | 
						|
 | 
						|
      // Keep increasing lambda until we make make progress
 | 
						|
      while(true) {
 | 
						|
        // Add prior factors at the current solution
 | 
						|
        gttic(damp);
 | 
						|
        GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
 | 
						|
        dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
 | 
						|
        {
 | 
						|
          // for each of the variables, add a prior at the current solution
 | 
						|
          double sigma = 1.0 / std::sqrt(lambda);
 | 
						|
          for(size_t j=0; j<delta_.size(); ++j) {
 | 
						|
            size_t dim = delta_[j].size();
 | 
						|
            Matrix A = eye(dim);
 | 
						|
            Vector b = delta_[j];
 | 
						|
            SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
 | 
						|
            GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model));
 | 
						|
            dampedFactorGraph.push_back(prior);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        gttoc(damp);
 | 
						|
        result.intermediateSteps++;
 | 
						|
 | 
						|
        gttic(solve);
 | 
						|
        // Solve Damped Gaussian Factor Graph
 | 
						|
        newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters_.getEliminationFunction());
 | 
						|
        // update the evalpoint with the new delta
 | 
						|
        evalpoint = theta_.retract(newDelta, ordering_);
 | 
						|
        gttoc(solve);
 | 
						|
 | 
						|
        // Evaluate the new error
 | 
						|
        gttic(compute_error);
 | 
						|
        double error = factors_.error(evalpoint);
 | 
						|
        gttoc(compute_error);
 | 
						|
 | 
						|
        if(error < result.error) {
 | 
						|
          // Keep this change
 | 
						|
          // Update the error value
 | 
						|
          result.error = error;
 | 
						|
          // Update the linearization point
 | 
						|
          theta_ = evalpoint;
 | 
						|
          // Reset the deltas to zeros
 | 
						|
          delta_.setZero();
 | 
						|
          // Put the linearization points and deltas back for specific variables
 | 
						|
          if(enforceConsistency_ && (linearKeys_.size() > 0)) {
 | 
						|
            theta_.update(linearKeys_);
 | 
						|
            BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, linearKeys_) {
 | 
						|
              Index index = ordering_.at(key_value.key);
 | 
						|
              delta_.at(index) = newDelta.at(index);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // Decrease lambda for next time
 | 
						|
          lambda /= lambdaFactor;
 | 
						|
          if(lambda < lambdaLowerBound) {
 | 
						|
            lambda = lambdaLowerBound;
 | 
						|
          }
 | 
						|
          // End this lambda search iteration
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          // Reject this change
 | 
						|
          // Increase lambda and continue searching
 | 
						|
          lambda *= lambdaFactor;
 | 
						|
          if(lambda > lambdaUpperBound) {
 | 
						|
            // The maximum lambda has been used. Print a warning and end the search.
 | 
						|
            std::cout << "Warning:  Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } // end while
 | 
						|
    }
 | 
						|
    gttoc(optimizer_iteration);
 | 
						|
 | 
						|
    result.iterations++;
 | 
						|
  } while(result.iterations < maxIterations &&
 | 
						|
      !checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT));
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
 | 
						|
  // In order to marginalize out the selected variables, the factors involved in those variables
 | 
						|
  // must be identified and removed. Also, the effect of those removed factors on the
 | 
						|
  // remaining variables needs to be accounted for. This will be done with linear container factors
 | 
						|
  // from the result of a partial elimination. This function removes the marginalized factors and
 | 
						|
  // adds the linearized factors back in.
 | 
						|
 | 
						|
  // Calculate marginal factors on the remaining variables (after marginalizing 'marginalizeKeys')
 | 
						|
  // Note: It is assumed the ordering already has these keys first
 | 
						|
  // Create the linear factor graph
 | 
						|
  GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
 | 
						|
 | 
						|
  // Create a variable index
 | 
						|
  VariableIndex variableIndex(linearFactorGraph, ordering_.size());
 | 
						|
 | 
						|
  // Use the variable Index to mark the factors that will be marginalized
 | 
						|
  std::set<size_t> removedFactorSlots;
 | 
						|
  BOOST_FOREACH(Key key, marginalizeKeys) {
 | 
						|
    const FastList<size_t>& slots = variableIndex[ordering_.at(key)];
 | 
						|
    removedFactorSlots.insert(slots.begin(), slots.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // Construct an elimination tree to perform sparse elimination
 | 
						|
  std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex) );
 | 
						|
 | 
						|
  // This is a tree. Only the top-most nodes/indices need to be eliminated; all of the children will be eliminated automatically
 | 
						|
  // Find the subset of nodes/keys that must be eliminated
 | 
						|
  std::set<Index> indicesToEliminate;
 | 
						|
  BOOST_FOREACH(Key key, marginalizeKeys) {
 | 
						|
    indicesToEliminate.insert(ordering_.at(key));
 | 
						|
  }
 | 
						|
  BOOST_FOREACH(Key key, marginalizeKeys) {
 | 
						|
    EliminationForest::removeChildrenIndices(indicesToEliminate, forest.at(ordering_.at(key)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate each top-most key, returning a Gaussian Factor on some of the remaining variables
 | 
						|
  // Convert the marginal factors into Linear Container Factors
 | 
						|
  // Add the marginal factor variables to the separator
 | 
						|
  NonlinearFactorGraph marginalFactors;
 | 
						|
  BOOST_FOREACH(Index index, indicesToEliminate) {
 | 
						|
    GaussianFactor::shared_ptr gaussianFactor = forest.at(index)->eliminateRecursive(parameters_.getEliminationFunction());
 | 
						|
    if(gaussianFactor->size() > 0) {
 | 
						|
      LinearContainerFactor::shared_ptr marginalFactor(new LinearContainerFactor(gaussianFactor, ordering_, theta_));
 | 
						|
      marginalFactors.push_back(marginalFactor);
 | 
						|
      // Add the keys associated with the marginal factor to the separator values
 | 
						|
      BOOST_FOREACH(Key key, *marginalFactor) {
 | 
						|
        if(!linearKeys_.exists(key)) {
 | 
						|
          linearKeys_.insert(key, theta_.at(key));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  insertFactors(marginalFactors);
 | 
						|
 | 
						|
  // Remove the marginalized variables and factors from the filter
 | 
						|
  // Remove marginalized factors from the factor graph
 | 
						|
  removeFactors(removedFactorSlots);
 | 
						|
 | 
						|
  // Remove marginalized keys from the system
 | 
						|
  eraseKeys(marginalizeKeys);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const std::string& label) {
 | 
						|
  std::cout << label;
 | 
						|
  BOOST_FOREACH(gtsam::Key key, keys) {
 | 
						|
    std::cout << " " << gtsam::DefaultKeyFormatter(key);
 | 
						|
  }
 | 
						|
  std::cout << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicFactor(const NonlinearFactor::shared_ptr& factor) {
 | 
						|
  std::cout << "f(";
 | 
						|
  if(factor) {
 | 
						|
    BOOST_FOREACH(Key key, factor->keys()) {
 | 
						|
      std::cout << " " << gtsam::DefaultKeyFormatter(key);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    std::cout << " NULL";
 | 
						|
  }
 | 
						|
  std::cout << " )" << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering) {
 | 
						|
  std::cout << "f(";
 | 
						|
  BOOST_FOREACH(Index index, factor->keys()) {
 | 
						|
    std::cout << " " << index << "[" << gtsam::DefaultKeyFormatter(ordering.key(index)) << "]";
 | 
						|
  }
 | 
						|
  std::cout << " )" << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicGraph(const NonlinearFactorGraph& graph, const std::string& label) {
 | 
						|
  std::cout << label << std::endl;
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, graph) {
 | 
						|
    PrintSymbolicFactor(factor);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph, const Ordering& ordering, const std::string& label) {
 | 
						|
  std::cout << label << std::endl;
 | 
						|
  BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, graph) {
 | 
						|
    PrintSymbolicFactor(factor, ordering);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
std::vector<Index> BatchFixedLagSmoother::EliminationForest::ComputeParents(const VariableIndex& structure) {
 | 
						|
  // Number of factors and variables
 | 
						|
  const size_t m = structure.nFactors();
 | 
						|
  const size_t n = structure.size();
 | 
						|
 | 
						|
  static const Index none = std::numeric_limits<Index>::max();
 | 
						|
 | 
						|
  // Allocate result parent vector and vector of last factor columns
 | 
						|
  std::vector<Index> parents(n, none);
 | 
						|
  std::vector<Index> prevCol(m, none);
 | 
						|
 | 
						|
  // for column j \in 1 to n do
 | 
						|
  for (Index j = 0; j < n; j++) {
 | 
						|
    // for row i \in Struct[A*j] do
 | 
						|
    BOOST_FOREACH(const size_t i, structure[j]) {
 | 
						|
      if (prevCol[i] != none) {
 | 
						|
        Index k = prevCol[i];
 | 
						|
        // find root r of the current tree that contains k
 | 
						|
        Index r = k;
 | 
						|
        while (parents[r] != none)
 | 
						|
          r = parents[r];
 | 
						|
        if (r != j) parents[r] = j;
 | 
						|
      }
 | 
						|
      prevCol[i] = j;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return parents;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
std::vector<BatchFixedLagSmoother::EliminationForest::shared_ptr> BatchFixedLagSmoother::EliminationForest::Create(const GaussianFactorGraph& factorGraph, const VariableIndex& structure) {
 | 
						|
  // Compute the tree structure
 | 
						|
  std::vector<Index> parents(ComputeParents(structure));
 | 
						|
 | 
						|
  // Number of variables
 | 
						|
  const size_t n = structure.size();
 | 
						|
 | 
						|
  static const Index none = std::numeric_limits<Index>::max();
 | 
						|
 | 
						|
  // Create tree structure
 | 
						|
  std::vector<shared_ptr> trees(n);
 | 
						|
  for (Index k = 1; k <= n; k++) {
 | 
						|
    Index j = n - k;  // Start at the last variable and loop down to 0
 | 
						|
    trees[j].reset(new EliminationForest(j));  // Create a new node on this variable
 | 
						|
    if (parents[j] != none)  // If this node has a parent, add it to the parent's children
 | 
						|
      trees[parents[j]]->add(trees[j]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Hang factors in right places
 | 
						|
  BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, factorGraph) {
 | 
						|
    if(factor && factor->size() > 0) {
 | 
						|
      Index j = *std::min_element(factor->begin(), factor->end());
 | 
						|
      if(j < structure.size())
 | 
						|
        trees[j]->add(factor);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return trees;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
GaussianFactor::shared_ptr BatchFixedLagSmoother::EliminationForest::eliminateRecursive(GaussianFactorGraph::Eliminate function) {
 | 
						|
 | 
						|
  // Create the list of factors to be eliminated, initially empty, and reserve space
 | 
						|
  GaussianFactorGraph factors;
 | 
						|
  factors.reserve(this->factors_.size() + this->subTrees_.size());
 | 
						|
 | 
						|
  // Add all factors associated with the current node
 | 
						|
  factors.push_back(this->factors_.begin(), this->factors_.end());
 | 
						|
 | 
						|
  // for all subtrees, eliminate into Bayes net and a separator factor, added to [factors]
 | 
						|
  BOOST_FOREACH(const shared_ptr& child, subTrees_)
 | 
						|
    factors.push_back(child->eliminateRecursive(function));
 | 
						|
 | 
						|
  // Combine all factors (from this node and from subtrees) into a joint factor
 | 
						|
  GaussianFactorGraph::EliminationResult eliminated(function(factors, 1));
 | 
						|
 | 
						|
  return eliminated.second;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::EliminationForest::removeChildrenIndices(std::set<Index>& indices, const BatchFixedLagSmoother::EliminationForest::shared_ptr& tree) {
 | 
						|
  BOOST_FOREACH(const EliminationForest::shared_ptr& child, tree->children()) {
 | 
						|
    indices.erase(child->key());
 | 
						|
    removeChildrenIndices(indices, child);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
} /// namespace gtsam
 |