713 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			713 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    testConcurrentBatchSmoother.cpp
 | |
|  * @brief   Unit tests for the Concurrent Batch Smoother
 | |
|  * @author  Stephen Williams (swilliams8@gatech.edu)
 | |
|  * @date    Jan 5, 2013
 | |
|  */
 | |
| 
 | |
| #include <gtsam_unstable/nonlinear/ConcurrentBatchSmoother.h>
 | |
| #include <gtsam_unstable/nonlinear/LinearizedFactor.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Ordering.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/nonlinear/Symbol.h>
 | |
| #include <gtsam/nonlinear/Key.h>
 | |
| #include <gtsam/inference/JunctionTree.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Set up initial pose, odometry difference, loop closure difference, and initialization errors
 | |
| const Pose3 poseInitial;
 | |
| const Pose3 poseOdometry( Rot3::RzRyRx(Vector_(3, 0.05, 0.10, -0.75)), Point3(1.0, -0.25, 0.10) );
 | |
| const Pose3 poseError( Rot3::RzRyRx(Vector_(3, 0.01, 0.02, -0.1)), Point3(0.05, -0.05, 0.02) );
 | |
| 
 | |
| // Set up noise models for the factors
 | |
| const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| const SharedDiagonal noiseOdometery = noiseModel::Diagonal::Sigmas(Vector_(6, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5));
 | |
| const SharedDiagonal noiseLoop = noiseModel::Diagonal::Sigmas(Vector_(6, 0.25, 0.25, 0.25, 1.0, 1.0, 1.0));
 | |
| 
 | |
| // Create a derived class to allow testing protected member functions
 | |
| class ConcurrentBatchSmootherTester : public ConcurrentBatchSmoother {
 | |
| public:
 | |
|   ConcurrentBatchSmootherTester(const LevenbergMarquardtParams& parameters) : ConcurrentBatchSmoother(parameters) { };
 | |
|   virtual ~ConcurrentBatchSmootherTester() { };
 | |
| 
 | |
|   // Add accessors to the protected members
 | |
|   void presync() {
 | |
|     ConcurrentBatchSmoother::presync();
 | |
|   };
 | |
|   void getSummarizedFactors(NonlinearFactorGraph& summarizedFactors) {
 | |
|     ConcurrentBatchSmoother::getSummarizedFactors(summarizedFactors);
 | |
|   };
 | |
|   void synchronize(const NonlinearFactorGraph& smootherFactors, const Values& smootherValues, const NonlinearFactorGraph& summarizedFactors, const Values& rootValues) {
 | |
|     ConcurrentBatchSmoother::synchronize(smootherFactors, smootherValues, summarizedFactors, rootValues);
 | |
|   };
 | |
|   void postsync() {
 | |
|     ConcurrentBatchSmoother::postsync();
 | |
|   };
 | |
| };
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool hessian_equal(const NonlinearFactorGraph& expected, const NonlinearFactorGraph& actual, const Values& theta, double tol = 1e-9) {
 | |
| 
 | |
|   FastSet<Key> expectedKeys = expected.keys();
 | |
|   FastSet<Key> actualKeys = actual.keys();
 | |
| 
 | |
|   // Verify the set of keys in both graphs are the same
 | |
|   if(!std::equal(expectedKeys.begin(), expectedKeys.end(), actualKeys.begin()))
 | |
|     return false;
 | |
| 
 | |
|   // Create an ordering
 | |
|   Ordering ordering;
 | |
|   BOOST_FOREACH(Key key, expectedKeys) {
 | |
|     ordering.push_back(key);
 | |
|   }
 | |
| 
 | |
|   // Linearize each factor graph
 | |
|   GaussianFactorGraph expectedGaussian;
 | |
|   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, expected) {
 | |
|     if(factor)
 | |
|       expectedGaussian.push_back( factor->linearize(theta, ordering) );
 | |
|   }
 | |
|   GaussianFactorGraph actualGaussian;
 | |
|   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, actual) {
 | |
|     if(factor)
 | |
|       actualGaussian.push_back( factor->linearize(theta, ordering) );
 | |
|   }
 | |
| 
 | |
|   // Convert linear factor graph into a dense Hessian
 | |
|   Matrix expectedHessian = expectedGaussian.augmentedHessian();
 | |
|   Matrix actualHessian = actualGaussian.augmentedHessian();
 | |
| 
 | |
|   // Zero out the lower-right entry. This corresponds to a constant in the optimization,
 | |
|   // which does not affect the result. Further, in conversions between Jacobians and Hessians,
 | |
|   // this term is ignored.
 | |
|   expectedHessian(expectedHessian.rows()-1, expectedHessian.cols()-1) = 0.0;
 | |
|   actualHessian(actualHessian.rows()-1, actualHessian.cols()-1) = 0.0;
 | |
| 
 | |
|   // Compare Hessians
 | |
|   return assert_equal(expectedHessian, actualHessian, tol);
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| void CreateFactors(NonlinearFactorGraph& graph, Values& theta, size_t index1 = 0, size_t index2 = 1) {
 | |
| 
 | |
|   // Calculate all poses
 | |
|   Pose3 poses[20];
 | |
|   poses[0] = poseInitial;
 | |
|   for(size_t index = 1; index < 20; ++index) {
 | |
|     poses[index] = poses[index-1].compose(poseOdometry);
 | |
|   }
 | |
| 
 | |
|   // Create all keys
 | |
|   Key keys[20];
 | |
|   for(size_t index = 0; index < 20; ++index) {
 | |
|     keys[index] = Symbol('X', index);
 | |
|   }
 | |
| 
 | |
|   // Create factors that will form a specific tree structure
 | |
|   // Loop over the included timestamps
 | |
|   for(size_t index = index1; index < index2; ++index) {
 | |
| 
 | |
|     switch(index) {
 | |
|       case 0:
 | |
|       {
 | |
|         graph.add(PriorFactor<Pose3>(keys[0], poses[0], noisePrior));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[0], poses[0].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 1:
 | |
|       {
 | |
|         // Add odometry factor between 0 and 1
 | |
|         Pose3 poseDelta = poses[0].between(poses[1]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[0], keys[1], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[1], poses[1].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 2:
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
|       case 3:
 | |
|       {
 | |
|         // Add odometry factor between 1 and 3
 | |
|         Pose3 poseDelta = poses[1].between(poses[3]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[1], keys[3], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 2 and 3
 | |
|         poseDelta = poses[2].between(poses[3]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[2], keys[3], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[2], poses[2].compose(poseError));
 | |
|         theta.insert(keys[3], poses[3].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 4:
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
|       case 5:
 | |
|       {
 | |
|         // Add odometry factor between 3 and 5
 | |
|         Pose3 poseDelta = poses[3].between(poses[5]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[3], keys[5], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[5], poses[5].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 6:
 | |
|       {
 | |
|         // Add odometry factor between 3 and 6
 | |
|         Pose3 poseDelta = poses[3].between(poses[6]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[3], keys[6], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 5 and 6
 | |
|         poseDelta = poses[5].between(poses[6]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[5], keys[6], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[6], poses[6].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 7:
 | |
|       {
 | |
|         // Add odometry factor between 4 and 7
 | |
|         Pose3 poseDelta = poses[4].between(poses[7]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[4], keys[7], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 6 and 7
 | |
|         poseDelta = poses[6].between(poses[7]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[6], keys[7], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[4], poses[4].compose(poseError));
 | |
|         theta.insert(keys[7], poses[7].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 8:
 | |
|         break;
 | |
| 
 | |
|       case 9:
 | |
|       {
 | |
|         // Add odometry factor between 6 and 9
 | |
|         Pose3 poseDelta = poses[6].between(poses[9]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[6], keys[9], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 7 and 9
 | |
|         poseDelta = poses[7].between(poses[9]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[7], keys[9], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 8 and 9
 | |
|         poseDelta = poses[8].between(poses[9]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[8], keys[9], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[8], poses[8].compose(poseError));
 | |
|         theta.insert(keys[9], poses[9].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 10:
 | |
|       {
 | |
|         // Add odometry factor between 9 and 10
 | |
|         Pose3 poseDelta = poses[9].between(poses[10]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[9], keys[10], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[10], poses[10].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 11:
 | |
|       {
 | |
|         // Add odometry factor between 10 and 11
 | |
|         Pose3 poseDelta = poses[10].between(poses[11]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[10], keys[11], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[11], poses[11].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 12:
 | |
|       {
 | |
|         // Add odometry factor between 7 and 12
 | |
|         Pose3 poseDelta = poses[7].between(poses[12]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[7], keys[12], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 9 and 12
 | |
|         poseDelta = poses[9].between(poses[12]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[9], keys[12], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[12], poses[12].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|       case 13:
 | |
|       {
 | |
|         // Add odometry factor between 10 and 13
 | |
|         Pose3 poseDelta = poses[10].between(poses[13]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[10], keys[13], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 12 and 13
 | |
|         poseDelta = poses[12].between(poses[13]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[12], keys[13], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[13], poses[13].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 14:
 | |
|       {
 | |
|         // Add odometry factor between 11 and 14
 | |
|         Pose3 poseDelta = poses[11].between(poses[14]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[11], keys[14], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 13 and 14
 | |
|         poseDelta = poses[13].between(poses[14]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[13], keys[14], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[14], poses[14].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 15:
 | |
|         break;
 | |
| 
 | |
|       case 16:
 | |
|       {
 | |
|         // Add odometry factor between 13 and 16
 | |
|         Pose3 poseDelta = poses[13].between(poses[16]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[13], keys[16], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 14 and 16
 | |
|         poseDelta = poses[14].between(poses[16]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[14], keys[16], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 15 and 16
 | |
|         poseDelta = poses[15].between(poses[16]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[15], keys[16], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[15], poses[15].compose(poseError));
 | |
|         theta.insert(keys[16], poses[16].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 17:
 | |
|       {
 | |
|         // Add odometry factor between 16 and 17
 | |
|         Pose3 poseDelta = poses[16].between(poses[17]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[16], keys[17], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[17], poses[17].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 18:
 | |
|       {
 | |
|         // Add odometry factor between 17 and 18
 | |
|         Pose3 poseDelta = poses[17].between(poses[18]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[17], keys[18], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[18], poses[18].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
|       case 19:
 | |
|       {
 | |
|         // Add odometry factor between 14 and 19
 | |
|         Pose3 poseDelta = poses[14].between(poses[19]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[14], keys[19], poseDelta, noiseOdometery));
 | |
|         // Add odometry factor between 16 and 19
 | |
|         poseDelta = poses[16].between(poses[19]);
 | |
|         graph.add(BetweenFactor<Pose3>(keys[16], keys[19], poseDelta, noiseOdometery));
 | |
|         // Add new variables
 | |
|         theta.insert(keys[19], poses[19].compose(poseError));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Values BatchOptimize(const NonlinearFactorGraph& graph, const Values& theta, const Values& rootValues = Values()) {
 | |
| 
 | |
|   // Create an L-M optimizer
 | |
|   LevenbergMarquardtParams parameters;
 | |
|   parameters.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_QR;
 | |
| 
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, theta, parameters);
 | |
| 
 | |
|   // Use a custom optimization loop so the linearization points can be controlled
 | |
|   double currentError;
 | |
|   do {
 | |
|     // Force variables associated with root keys to keep the same linearization point
 | |
|     if(rootValues.size() > 0) {
 | |
|       // Put the old values of the root keys back into the optimizer state
 | |
|       optimizer.state().values.update(rootValues);
 | |
|       // Update the error value with the new theta
 | |
|       optimizer.state().error = graph.error(optimizer.state().values);
 | |
|     }
 | |
| 
 | |
|     // Do next iteration
 | |
|     currentError = optimizer.error();
 | |
|     optimizer.iterate();
 | |
| 
 | |
|   } while(optimizer.iterations() < parameters.maxIterations &&
 | |
|       !checkConvergence(parameters.relativeErrorTol, parameters.absoluteErrorTol,
 | |
|           parameters.errorTol, currentError, optimizer.error(), parameters.verbosity));
 | |
| 
 | |
|   // return the final optimized values
 | |
|   return optimizer.values();
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void FindFactorsWithAny(const std::set<Key>& keys, const NonlinearFactorGraph& sourceFactors, NonlinearFactorGraph& destinationFactors) {
 | |
| 
 | |
|   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, sourceFactors) {
 | |
|     NonlinearFactor::const_iterator key = factor->begin();
 | |
|     while((key != factor->end()) && (!std::binary_search(keys.begin(), keys.end(), *key))) {
 | |
|       ++key;
 | |
|     }
 | |
|     if(key != factor->end()) {
 | |
|       destinationFactors.push_back(factor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void FindFactorsWithOnly(const std::set<Key>& keys, const NonlinearFactorGraph& sourceFactors, NonlinearFactorGraph& destinationFactors) {
 | |
| 
 | |
|   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, sourceFactors) {
 | |
|     NonlinearFactor::const_iterator key = factor->begin();
 | |
|     while((key != factor->end()) && (std::binary_search(keys.begin(), keys.end(), *key))) {
 | |
|       ++key;
 | |
|     }
 | |
|     if(key == factor->end()) {
 | |
|       destinationFactors.push_back(factor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| typedef BayesTree<GaussianConditional,ISAM2Clique>::sharedClique Clique;
 | |
| void SymbolicPrintTree(const Clique& clique, const Ordering& ordering, const std::string indent = "") {
 | |
|   std::cout << indent << "P( ";
 | |
|   BOOST_FOREACH(Index index, clique->conditional()->frontals()){
 | |
|     std::cout << DefaultKeyFormatter(ordering.key(index)) << " ";
 | |
|   }
 | |
|   if(clique->conditional()->nrParents() > 0) {
 | |
|     std::cout << "| ";
 | |
|   }
 | |
|   BOOST_FOREACH(Index index, clique->conditional()->parents()){
 | |
|     std::cout << DefaultKeyFormatter(ordering.key(index)) << " ";
 | |
|   }
 | |
|   std::cout << ")" << std::endl;
 | |
| 
 | |
|   BOOST_FOREACH(const Clique& child, clique->children()) {
 | |
|     SymbolicPrintTree(child, ordering, indent+"  ");
 | |
|   }
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE( ConcurrentBatchSmoother, update_Batch )
 | |
| {
 | |
|   // Test the 'update' function of the ConcurrentBatchSmoother in a nonlinear environment.
 | |
|   // Thus, a full L-M optimization and the ConcurrentBatchSmoother results should be identical
 | |
|   // This tests adds all of the factors to the smoother at once (i.e. batch)
 | |
| 
 | |
|   // Create a set of optimizer parameters
 | |
|   LevenbergMarquardtParams parameters;
 | |
| 
 | |
|   // Create a Concurrent Batch Smoother
 | |
|   ConcurrentBatchSmoother smoother(parameters);
 | |
| 
 | |
|   // Create containers to keep the full graph
 | |
|   Values fullTheta;
 | |
|   NonlinearFactorGraph fullGraph;
 | |
| 
 | |
|   // Create all factors
 | |
|   CreateFactors(fullGraph, fullTheta, 0, 20);
 | |
| 
 | |
|   // Optimize with Concurrent Batch Smoother
 | |
|   smoother.update(fullGraph, fullTheta);
 | |
|   Values actual = smoother.calculateEstimate();
 | |
| 
 | |
|   // Optimize with L-M
 | |
|   Values expected = BatchOptimize(fullGraph, fullTheta);
 | |
| 
 | |
|   // Check smoother versus batch
 | |
|   CHECK(assert_equal(expected, actual, 1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE( ConcurrentBatchSmoother, update_Incremental )
 | |
| {
 | |
|   // Test the 'update' function of the ConcurrentBatchSmoother in a nonlinear environment.
 | |
|   // Thus, a full L-M optimization and the ConcurrentBatchSmoother results should be identical
 | |
|   // This tests adds the factors to the smoother as they are created (i.e. incrementally)
 | |
| 
 | |
|   // Create a set of optimizer parameters
 | |
|   LevenbergMarquardtParams parameters;
 | |
| 
 | |
|   // Create a Concurrent Batch Smoother
 | |
|   ConcurrentBatchSmoother smoother(parameters);
 | |
| 
 | |
|   // Create containers to keep the full graph
 | |
|   Values fullTheta;
 | |
|   NonlinearFactorGraph fullGraph;
 | |
| 
 | |
|   // Add odometry from time 0 to time 10
 | |
|   for(size_t i = 0; i < 20; ++i) {
 | |
|     // Create containers to keep the new factors
 | |
|     Values newTheta;
 | |
|     NonlinearFactorGraph newGraph;
 | |
| 
 | |
|     // Create factors
 | |
|     CreateFactors(newGraph, newTheta, i, i+1);
 | |
| 
 | |
|     // Add these entries to the filter
 | |
|     smoother.update(newGraph, newTheta);
 | |
|     Values actual = smoother.calculateEstimate();
 | |
| 
 | |
|     // Add these entries to the full batch version
 | |
|     fullGraph.push_back(newGraph);
 | |
|     fullTheta.insert(newTheta);
 | |
|     Values expected = BatchOptimize(fullGraph, fullTheta);
 | |
|     fullTheta = expected;
 | |
| 
 | |
|     // Compare filter solution with full batch
 | |
|     CHECK(assert_equal(expected, actual, 1e-4));
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE( ConcurrentBatchSmoother, synchronize )
 | |
| {
 | |
|   // Test the 'synchronize' function of the ConcurrentBatchSmoother in a nonlinear environment.
 | |
|   // The smoother is operating on a known tree structure, so the factors and summarization can
 | |
|   // be predicted for testing purposes
 | |
| 
 | |
|   // Create a set of optimizer parameters
 | |
|   LevenbergMarquardtParams parameters;
 | |
| 
 | |
|   // Create a Concurrent Batch Smoother
 | |
|   ConcurrentBatchSmootherTester smoother(parameters);
 | |
| 
 | |
|   // Create containers to keep the full graph
 | |
|   Values fullTheta;
 | |
|   NonlinearFactorGraph fullGraph;
 | |
| 
 | |
|   // Create factors for times 0 - 12
 | |
|   // When eliminated with ordering (X2 X0 X1 X4 X5 X3 X6 X8 X11 X10 X7 X9 X12)augmentedHessian
 | |
|   // ... this Bayes Tree is produced:
 | |
|   // Bayes Tree:
 | |
|   //   P( X7 X9 X12 )
 | |
|   //     P( X10 | X9 )
 | |
|   //       P( X11 | X10 )
 | |
|   //     P( X8 | X9 )
 | |
|   //     P( X6 | X7 X9 )
 | |
|   //       P( X5 X3 | X6 )
 | |
|   //         P( X1 | X3 )
 | |
|   //           P( X0 | X1 )
 | |
|   //         P( X2 | X3 )
 | |
|   //     P( X4 | X7 )
 | |
|   // We then produce the inputs necessary for the 'synchronize' function.
 | |
|   // The smoother is branches X4 and X6, the filter is branches X8 and X10, and the root is (X7 X9 X12)
 | |
|   CreateFactors(fullGraph, fullTheta, 0, 13);
 | |
| 
 | |
|   // Optimize the full graph
 | |
|   Values optimalTheta = BatchOptimize(fullGraph, fullTheta);
 | |
| 
 | |
|   // Re-eliminate to create the Bayes Tree
 | |
|   Ordering ordering;
 | |
|   ordering.push_back(Symbol('X',  2));
 | |
|   ordering.push_back(Symbol('X',  0));
 | |
|   ordering.push_back(Symbol('X',  1));
 | |
|   ordering.push_back(Symbol('X',  4));
 | |
|   ordering.push_back(Symbol('X',  5));
 | |
|   ordering.push_back(Symbol('X',  3));
 | |
|   ordering.push_back(Symbol('X',  6));
 | |
|   ordering.push_back(Symbol('X',  8));
 | |
|   ordering.push_back(Symbol('X', 11));
 | |
|   ordering.push_back(Symbol('X', 10));
 | |
|   ordering.push_back(Symbol('X',  7));
 | |
|   ordering.push_back(Symbol('X',  9));
 | |
|   ordering.push_back(Symbol('X', 12));
 | |
|   Values linpoint;
 | |
|   linpoint.insert(optimalTheta);
 | |
|   GaussianFactorGraph linearGraph = *fullGraph.linearize(linpoint, ordering);
 | |
|   JunctionTree<GaussianFactorGraph, ISAM2Clique> jt(linearGraph);
 | |
|   ISAM2Clique::shared_ptr root = jt.eliminate(EliminateQR);
 | |
|   BayesTree<GaussianConditional, ISAM2Clique> bayesTree;
 | |
|   bayesTree.insert(root);
 | |
| 
 | |
|   // Extract the values for the smoother keys. This consists of the branches: X4 and X6
 | |
|   // Extract the non-root values from the initial values to test the smoother optimization
 | |
|   Values smootherValues;
 | |
|   smootherValues.insert(Symbol('X',  0), fullTheta.at(Symbol('X',  0)));
 | |
|   smootherValues.insert(Symbol('X',  1), fullTheta.at(Symbol('X',  1)));
 | |
|   smootherValues.insert(Symbol('X',  2), fullTheta.at(Symbol('X',  2)));
 | |
|   smootherValues.insert(Symbol('X',  3), fullTheta.at(Symbol('X',  3)));
 | |
|   smootherValues.insert(Symbol('X',  4), fullTheta.at(Symbol('X',  4)));
 | |
|   smootherValues.insert(Symbol('X',  5), fullTheta.at(Symbol('X',  5)));
 | |
|   smootherValues.insert(Symbol('X',  6), fullTheta.at(Symbol('X',  6)));
 | |
| 
 | |
|   // Extract the optimal root values
 | |
|   Values rootValues;
 | |
|   rootValues.insert(Symbol('X',  7), optimalTheta.at(Symbol('X',  7)));
 | |
|   rootValues.insert(Symbol('X',  9), optimalTheta.at(Symbol('X',  9)));
 | |
|   rootValues.insert(Symbol('X', 12), optimalTheta.at(Symbol('X', 12)));
 | |
| 
 | |
|   // Extract the nonlinear smoother factors as any factor with a non-root smoother key
 | |
|   std::set<Key> smootherKeys;
 | |
|   smootherKeys.insert(Symbol('X', 0));
 | |
|   smootherKeys.insert(Symbol('X', 1));
 | |
|   smootherKeys.insert(Symbol('X', 2));
 | |
|   smootherKeys.insert(Symbol('X', 3));
 | |
|   smootherKeys.insert(Symbol('X', 4));
 | |
|   smootherKeys.insert(Symbol('X', 5));
 | |
|   smootherKeys.insert(Symbol('X', 6));
 | |
|   NonlinearFactorGraph smootherFactors;
 | |
|   FindFactorsWithAny(smootherKeys, fullGraph, smootherFactors);
 | |
| 
 | |
|   // Extract the filter summarized factors. This consists of the linear cached factors from
 | |
|   // the filter branches X8 and X10, as well as any nonlinear factor that involves only root keys
 | |
|   NonlinearFactorGraph filterSummarization;
 | |
|   filterSummarization.add(LinearizedJacobianFactor(boost::static_pointer_cast<JacobianFactor>(bayesTree.nodes().at(ordering.at(Symbol('X',  8)))->cachedFactor()), ordering, linpoint));
 | |
|   filterSummarization.add(LinearizedJacobianFactor(boost::static_pointer_cast<JacobianFactor>(bayesTree.nodes().at(ordering.at(Symbol('X', 10)))->cachedFactor()), ordering, linpoint));
 | |
|   std::set<Key> rootKeys;
 | |
|   rootKeys.insert(Symbol('X',  7));
 | |
|   rootKeys.insert(Symbol('X',  9));
 | |
|   rootKeys.insert(Symbol('X', 12));
 | |
|   FindFactorsWithOnly(rootKeys, fullGraph, filterSummarization);
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Perform the synchronization procedure
 | |
|   NonlinearFactorGraph actualSmootherSummarization;
 | |
|   smoother.presync();
 | |
|   smoother.getSummarizedFactors(actualSmootherSummarization);
 | |
|   smoother.synchronize(smootherFactors, smootherValues, filterSummarization, rootValues);
 | |
|   smoother.postsync();
 | |
| 
 | |
|   // Verify the returned smoother values is empty in the first iteration
 | |
|   NonlinearFactorGraph expectedSmootherSummarization;
 | |
|   CHECK(assert_equal(expectedSmootherSummarization, actualSmootherSummarization, 1e-4));
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Perform a full update of the smoother. Since the root values/summarized filter factors were
 | |
|   // created at the optimal values, the smoother should be identical to the batch optimization
 | |
|   smoother.update();
 | |
|   Values actualSmootherTheta = smoother.calculateEstimate();
 | |
| 
 | |
|   // Create the expected values as the optimal set
 | |
|   Values expectedSmootherTheta;
 | |
|   expectedSmootherTheta.insert(Symbol('X',  0), optimalTheta.at(Symbol('X',  0)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  1), optimalTheta.at(Symbol('X',  1)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  2), optimalTheta.at(Symbol('X',  2)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  3), optimalTheta.at(Symbol('X',  3)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  4), optimalTheta.at(Symbol('X',  4)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  5), optimalTheta.at(Symbol('X',  5)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  6), optimalTheta.at(Symbol('X',  6)));
 | |
| 
 | |
|   // Compare filter solution with full batch
 | |
|   CHECK(assert_equal(expectedSmootherTheta, actualSmootherTheta, 1e-4));
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Add a loop closure factor to the smoother and re-check. Since the filter
 | |
|   // factors were created at the optimal linpoint, and since the new loop closure
 | |
|   // does not involve filter keys, the smoother should still yeild the optimal solution
 | |
|   // The new Bayes Tree is:
 | |
|   // Bayes Tree:
 | |
|   //   P( X7 X9 X12 )
 | |
|   //     P( X10 | X9 )
 | |
|   //       P( X11 | X10 )
 | |
|   //     P( X8 | X9 )
 | |
|   //     P( X6 | X7 X9 )
 | |
|   //       P( X4 | X6 X7 )
 | |
|   //         P( X3 X5 | X4 X6 )
 | |
|   //           P( X2 | X3 )
 | |
|   //           P( X1 | X3 X4 )
 | |
|   //             P( X0 | X1 )
 | |
|   Pose3 poseDelta = fullTheta.at<Pose3>(Symbol('X', 1)).between(fullTheta.at<Pose3>(Symbol('X', 4)));
 | |
|   NonlinearFactor::shared_ptr loopClosure = NonlinearFactor::shared_ptr(new BetweenFactor<Pose3>(Symbol('X', 1), Symbol('X', 4), poseDelta, noiseOdometery));
 | |
|   fullGraph.push_back(loopClosure);
 | |
|   optimalTheta = BatchOptimize(fullGraph, fullTheta, rootValues);
 | |
| 
 | |
|   // Recreate the Bayes Tree
 | |
|   linpoint.clear();
 | |
|   linpoint.insert(optimalTheta);
 | |
|   linpoint.update(rootValues);
 | |
|   linearGraph = *fullGraph.linearize(linpoint, ordering);
 | |
|   jt = JunctionTree<GaussianFactorGraph, ISAM2Clique>(linearGraph);
 | |
|   root = jt.eliminate(EliminateQR);
 | |
|   bayesTree = BayesTree<GaussianConditional, ISAM2Clique>();
 | |
|   bayesTree.insert(root);
 | |
| 
 | |
|   // Add the loop closure to the smoother
 | |
|   NonlinearFactorGraph newFactors;
 | |
|   newFactors.push_back(loopClosure);
 | |
|   smoother.update(newFactors);
 | |
|   actualSmootherTheta = smoother.calculateEstimate();
 | |
| 
 | |
|   // Create the expected values as the optimal set
 | |
|   expectedSmootherTheta.clear();
 | |
|   expectedSmootherTheta.insert(Symbol('X',  0), optimalTheta.at(Symbol('X',  0)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  1), optimalTheta.at(Symbol('X',  1)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  2), optimalTheta.at(Symbol('X',  2)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  3), optimalTheta.at(Symbol('X',  3)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  4), optimalTheta.at(Symbol('X',  4)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  5), optimalTheta.at(Symbol('X',  5)));
 | |
|   expectedSmootherTheta.insert(Symbol('X',  6), optimalTheta.at(Symbol('X',  6)));
 | |
| 
 | |
|   // Compare filter solution with full batch
 | |
|   // TODO: Check This
 | |
| //  CHECK(assert_equal(expectedSmootherTheta, actualSmootherTheta, 1e-4));
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Now perform a second synchronization to test the smoother-calculated summarization
 | |
|   actualSmootherSummarization.resize(0);
 | |
|   smootherFactors.resize(0);
 | |
|   smootherValues.clear();
 | |
|   smoother.presync();
 | |
|   smoother.getSummarizedFactors(actualSmootherSummarization);
 | |
|   smoother.synchronize(smootherFactors, smootherValues, filterSummarization, rootValues);
 | |
|   smoother.postsync();
 | |
| 
 | |
|   // Extract the expected smoother summarization from the Bayes Tree
 | |
|   // The smoother branches after the addition of the loop closure is only X6
 | |
|   expectedSmootherSummarization.resize(0);
 | |
|   JacobianFactor::shared_ptr jf = boost::dynamic_pointer_cast<JacobianFactor>(bayesTree.nodes().at(ordering.at(Symbol('X',  6)))->cachedFactor());
 | |
|   LinearizedJacobianFactor::shared_ptr ljf(new LinearizedJacobianFactor(jf, ordering, linpoint));
 | |
|   expectedSmootherSummarization.push_back(ljf);
 | |
| 
 | |
|   // Compare smoother factors with the expected factors by computing the hessian information matrix
 | |
|   // TODO: Check This
 | |
| //  CHECK(hessian_equal(expectedSmootherSummarization, actualSmootherSummarization, linpoint, 1e-4));
 | |
| 
 | |
| 
 | |
| 
 | |
|   // TODO: Modify the second synchronization so that the filter sends an additional set of factors.
 | |
|   // I'm not sure what additional code this will exercise, but just for good measure.
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |