312 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file   testSubgraphConditioner.cpp
 | |
|  *  @brief  Unit tests for SubgraphPreconditioner
 | |
|  *  @author Frank Dellaert
 | |
|  **/
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| 
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| #include <gtsam/inference/Ordering.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/linear/GaussianEliminationTree.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam/linear/SubgraphPreconditioner.h>
 | |
| #include <gtsam/linear/iterative.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| #include <gtsam/symbolic/SymbolicFactorGraph.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <boost/archive/xml_iarchive.hpp>
 | |
| #include <boost/assign/std/list.hpp>
 | |
| #include <boost/range/adaptor/reversed.hpp>
 | |
| #include <boost/serialization/export.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <fstream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| // define keys
 | |
| // Create key for simulated planar graph
 | |
| Symbol key(int x, int y) { return symbol_shorthand::X(1000 * x + y); }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SubgraphPreconditioner, planarOrdering) {
 | |
|   // Check canonical ordering
 | |
|   Ordering expected, ordering = planarOrdering(3);
 | |
|   expected +=
 | |
|       key(3, 3), key(2, 3), key(1, 3),
 | |
|       key(3, 2), key(2, 2), key(1, 2),
 | |
|       key(3, 1), key(2, 1), key(1, 1);
 | |
|   EXPECT(assert_equal(expected, ordering));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** unnormalized error */
 | |
| static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
 | |
|   double total_error = 0.;
 | |
|   for (const GaussianFactor::shared_ptr& factor : fg)
 | |
|     total_error += factor->error(x);
 | |
|   return total_error;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SubgraphPreconditioner, planarGraph) {
 | |
|   // Check planar graph construction
 | |
|   GaussianFactorGraph A;
 | |
|   VectorValues xtrue;
 | |
|   boost::tie(A, xtrue) = planarGraph(3);
 | |
|   LONGS_EQUAL(13, A.size());
 | |
|   LONGS_EQUAL(9, xtrue.size());
 | |
|   DOUBLES_EQUAL(0, error(A, xtrue), 1e-9);  // check zero error for xtrue
 | |
| 
 | |
|   // Check that xtrue is optimal
 | |
|   GaussianBayesNet R1 = *A.eliminateSequential();
 | |
|   VectorValues actual = R1.optimize();
 | |
|   EXPECT(assert_equal(xtrue, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SubgraphPreconditioner, splitOffPlanarTree) {
 | |
|   // Build a planar graph
 | |
|   GaussianFactorGraph A;
 | |
|   VectorValues xtrue;
 | |
|   boost::tie(A, xtrue) = planarGraph(3);
 | |
| 
 | |
|   // Get the spanning tree and constraints, and check their sizes
 | |
|   GaussianFactorGraph T, C;
 | |
|   boost::tie(T, C) = splitOffPlanarTree(3, A);
 | |
|   LONGS_EQUAL(9, T.size());
 | |
|   LONGS_EQUAL(4, C.size());
 | |
| 
 | |
|   // Check that the tree can be solved to give the ground xtrue
 | |
|   GaussianBayesNet R1 = *T.eliminateSequential();
 | |
|   VectorValues xbar = R1.optimize();
 | |
|   EXPECT(assert_equal(xtrue, xbar));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SubgraphPreconditioner, system) {
 | |
|   // Build a planar graph
 | |
|   GaussianFactorGraph Ab;
 | |
|   VectorValues xtrue;
 | |
|   size_t N = 3;
 | |
|   boost::tie(Ab, xtrue) = planarGraph(N);  // A*x-b
 | |
| 
 | |
|   // Get the spanning tree and remaining graph
 | |
|   GaussianFactorGraph Ab1, Ab2;  // A1*x-b1 and A2*x-b2
 | |
|   boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
 | |
| 
 | |
|   // Eliminate the spanning tree to build a prior
 | |
|   const Ordering ord = planarOrdering(N);
 | |
|   auto Rc1 = *Ab1.eliminateSequential(ord);  // R1*x-c1
 | |
|   VectorValues xbar = Rc1.optimize();       // xbar = inv(R1)*c1
 | |
| 
 | |
|   // Create Subgraph-preconditioned system
 | |
|   const SubgraphPreconditioner system(Ab2, Rc1, xbar);
 | |
| 
 | |
|   // Get corresponding matrices for tests. Add dummy factors to Ab2 to make
 | |
|   // sure it works with the ordering.
 | |
|   Ordering ordering = Rc1.ordering();  // not ord in general!
 | |
|   Ab2.add(key(1, 1), Z_2x2, Z_2x1);
 | |
|   Ab2.add(key(1, 2), Z_2x2, Z_2x1);
 | |
|   Ab2.add(key(1, 3), Z_2x2, Z_2x1);
 | |
|   Matrix A, A1, A2;
 | |
|   Vector b, b1, b2;
 | |
|   std::tie(A, b) = Ab.jacobian(ordering);
 | |
|   std::tie(A1, b1) = Ab1.jacobian(ordering);
 | |
|   std::tie(A2, b2) = Ab2.jacobian(ordering);
 | |
|   Matrix R1 = Rc1.matrix(ordering).first;
 | |
|   Matrix Abar(13 * 2, 9 * 2);
 | |
|   Abar.topRows(9 * 2) = Matrix::Identity(9 * 2, 9 * 2);
 | |
|   Abar.bottomRows(8) = A2.topRows(8) * R1.inverse();
 | |
| 
 | |
|   // Helper function to vectorize in correct order, which is the order in which
 | |
|   // we eliminated the spanning tree.
 | |
|   auto vec = [ordering](const VectorValues& x) { return x.vector(ordering); };
 | |
| 
 | |
|   // Set up y0 as all zeros
 | |
|   const VectorValues y0 = system.zero();
 | |
| 
 | |
|   // y1 = perturbed y0
 | |
|   VectorValues y1 = system.zero();
 | |
|   y1[key(3, 3)] = Vector2(1.0, -1.0);
 | |
| 
 | |
|   // Check backSubstituteTranspose works with R1
 | |
|   VectorValues actual = Rc1.backSubstituteTranspose(y1);
 | |
|   Vector expected = R1.transpose().inverse() * vec(y1);
 | |
|   EXPECT(assert_equal(expected, vec(actual)));
 | |
| 
 | |
|   // Check corresponding x values
 | |
|   // for y = 0, we get xbar:
 | |
|   EXPECT(assert_equal(xbar, system.x(y0)));
 | |
|   // for non-zero y, answer is x = xbar + inv(R1)*y
 | |
|   const Vector expected_x1 = vec(xbar) + R1.inverse() * vec(y1);
 | |
|   const VectorValues x1 = system.x(y1);
 | |
|   EXPECT(assert_equal(expected_x1, vec(x1)));
 | |
| 
 | |
|   // Check errors
 | |
|   DOUBLES_EQUAL(0, error(Ab, xbar), 1e-9);
 | |
|   DOUBLES_EQUAL(0, system.error(y0), 1e-9);
 | |
|   DOUBLES_EQUAL(2, error(Ab, x1), 1e-9);
 | |
|   DOUBLES_EQUAL(2, system.error(y1), 1e-9);
 | |
| 
 | |
|   // Check that transposeMultiplyAdd <=> y += alpha * Abar' * e
 | |
|   // We check for e1 =[1;0] and e2=[0;1] corresponding to T and C
 | |
|   const double alpha = 0.5;
 | |
|   Errors e1, e2;
 | |
|   for (size_t i = 0; i < 13; i++) {
 | |
|     e1 += i < 9 ? Vector2(1, 1) : Vector2(0, 0);
 | |
|     e2 += i >= 9 ? Vector2(1, 1) : Vector2(0, 0);
 | |
|   }
 | |
|   Vector ee1(13 * 2), ee2(13 * 2);
 | |
|   ee1 << Vector::Ones(9 * 2), Vector::Zero(4 * 2);
 | |
|   ee2 << Vector::Zero(9 * 2), Vector::Ones(4 * 2);
 | |
| 
 | |
|   // Check transposeMultiplyAdd for e1
 | |
|   VectorValues y = system.zero();
 | |
|   system.transposeMultiplyAdd(alpha, e1, y);
 | |
|   Vector expected_y = alpha * Abar.transpose() * ee1;
 | |
|   EXPECT(assert_equal(expected_y, vec(y)));
 | |
| 
 | |
|   // Check transposeMultiplyAdd for e2
 | |
|   y = system.zero();
 | |
|   system.transposeMultiplyAdd(alpha, e2, y);
 | |
|   expected_y = alpha * Abar.transpose() * ee2;
 | |
|   EXPECT(assert_equal(expected_y, vec(y)));
 | |
| 
 | |
|   // Test gradient in y
 | |
|   auto g = system.gradient(y0);
 | |
|   Vector expected_g = Vector::Zero(18);
 | |
|   EXPECT(assert_equal(expected_g, vec(g)));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "JacobianFactor")
 | |
| 
 | |
| // Read from XML file
 | |
| static GaussianFactorGraph read(const string& name) {
 | |
|   auto inputFile = findExampleDataFile(name);
 | |
|   ifstream is(inputFile);
 | |
|   if (!is.is_open()) throw runtime_error("Cannot find file " + inputFile);
 | |
|   boost::archive::xml_iarchive in_archive(is);
 | |
|   GaussianFactorGraph Ab;
 | |
|   in_archive >> boost::serialization::make_nvp("graph", Ab);
 | |
|   return Ab;
 | |
| }
 | |
| 
 | |
| TEST(SubgraphSolver, Solves) {
 | |
|   // Create preconditioner
 | |
|   SubgraphPreconditioner system;
 | |
| 
 | |
|   // We test on three different graphs
 | |
|   const auto Ab1 = planarGraph(3).first;
 | |
|   const auto Ab2 = read("toy3D");
 | |
|   const auto Ab3 = read("randomGrid3D");
 | |
| 
 | |
|   // For all graphs, test solve and solveTranspose
 | |
|   for (const auto& Ab : {Ab1, Ab2, Ab3}) {
 | |
|     // Call build, a non-const method needed to make solve work :-(
 | |
|     KeyInfo keyInfo(Ab);
 | |
|     std::map<Key, Vector> lambda;
 | |
|     system.build(Ab, keyInfo, lambda);
 | |
| 
 | |
|     // Create a perturbed (non-zero) RHS
 | |
|     const auto xbar = system.Rc1().optimize();  // merely for use in zero below
 | |
|     auto values_y = VectorValues::Zero(xbar);
 | |
|     auto it = values_y.begin();
 | |
|     it->second.setConstant(100);
 | |
|     ++it;
 | |
|     it->second.setConstant(-100);
 | |
| 
 | |
|     // Solve the VectorValues way
 | |
|     auto values_x = system.Rc1().backSubstitute(values_y);
 | |
| 
 | |
|     // Solve the matrix way, this really just checks BN::backSubstitute
 | |
|     // This only works with Rc1 ordering, not with keyInfo !
 | |
|     // TODO(frank): why does this not work with an arbitrary ordering?
 | |
|     const auto ord = system.Rc1().ordering();
 | |
|     const Matrix R1 = system.Rc1().matrix(ord).first;
 | |
|     auto ord_y = values_y.vector(ord);
 | |
|     auto vector_x = R1.inverse() * ord_y;
 | |
|     EXPECT(assert_equal(vector_x, values_x.vector(ord)));
 | |
| 
 | |
|     // Test that 'solve' does implement x = R^{-1} y
 | |
|     // We do this by asserting it gives same answer as backSubstitute
 | |
|     // Only works with keyInfo ordering:
 | |
|     const auto ordering = keyInfo.ordering();
 | |
|     auto vector_y = values_y.vector(ordering);
 | |
|     const size_t N = R1.cols();
 | |
|     Vector solve_x = Vector::Zero(N);
 | |
|     system.solve(vector_y, solve_x);
 | |
|     EXPECT(assert_equal(values_x.vector(ordering), solve_x));
 | |
| 
 | |
|     // Test that transposeSolve does implement x = R^{-T} y
 | |
|     // We do this by asserting it gives same answer as backSubstituteTranspose
 | |
|     auto values_x2 = system.Rc1().backSubstituteTranspose(values_y);
 | |
|     Vector solveT_x = Vector::Zero(N);
 | |
|     system.transposeSolve(vector_y, solveT_x);
 | |
|     EXPECT(assert_equal(values_x2.vector(ordering), solveT_x));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SubgraphPreconditioner, conjugateGradients) {
 | |
|   // Build a planar graph
 | |
|   GaussianFactorGraph Ab;
 | |
|   VectorValues xtrue;
 | |
|   size_t N = 3;
 | |
|   boost::tie(Ab, xtrue) = planarGraph(N);  // A*x-b
 | |
| 
 | |
|   // Get the spanning tree
 | |
|   GaussianFactorGraph Ab1, Ab2;  // A1*x-b1 and A2*x-b2
 | |
|   boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
 | |
| 
 | |
|   // Eliminate the spanning tree to build a prior
 | |
|   GaussianBayesNet Rc1 = *Ab1.eliminateSequential();  // R1*x-c1
 | |
|   VectorValues xbar = Rc1.optimize();  // xbar = inv(R1)*c1
 | |
| 
 | |
|   // Create Subgraph-preconditioned system
 | |
|   SubgraphPreconditioner system(Ab2, Rc1, xbar);
 | |
| 
 | |
|   // Create zero config y0 and perturbed config y1
 | |
|   VectorValues y0 = VectorValues::Zero(xbar);
 | |
| 
 | |
|   VectorValues y1 = y0;
 | |
|   y1[key(2, 2)] = Vector2(1.0, -1.0);
 | |
|   VectorValues x1 = system.x(y1);
 | |
| 
 | |
|   // Solve for the remaining constraints using PCG
 | |
|   ConjugateGradientParameters parameters;
 | |
|   VectorValues actual = conjugateGradients<SubgraphPreconditioner,
 | |
|       VectorValues, Errors>(system, y1, parameters);
 | |
|   EXPECT(assert_equal(y0,actual));
 | |
| 
 | |
|   // Compare with non preconditioned version:
 | |
|   VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
 | |
|   EXPECT(assert_equal(xtrue, actual2, 1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |