406 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			406 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file testBAD.cpp
 | |
|  * @date September 18, 2014
 | |
|  * @author Frank Dellaert
 | |
|  * @brief unit tests for Block Automatic Differentiation
 | |
|  */
 | |
| 
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/geometry/Cal3_S2.h>
 | |
| #include <gtsam/slam/GeneralSFMFactor.h>
 | |
| #include <gtsam/inference/Key.h>
 | |
| #include <gtsam/base/Testable.h>
 | |
| 
 | |
| #include <boost/make_shared.hpp>
 | |
| #include <boost/foreach.hpp>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| ///-----------------------------------------------------------------------------
 | |
| /// Expression node. The superclass for objects that do the heavy lifting
 | |
| /// An Expression<T> has a pointer to an ExpressionNode<T> underneath
 | |
| /// allowing Expressions to have polymorphic behaviour even though they
 | |
| /// are passed by value. This is the same way boost::function works.
 | |
| /// http://loki-lib.sourceforge.net/html/a00652.html
 | |
| template<class T>
 | |
| class ExpressionNode {
 | |
|  public:
 | |
|   ExpressionNode(){}
 | |
|   virtual ~ExpressionNode(){}
 | |
|   virtual void getKeys(std::set<Key>& keys) const = 0;
 | |
|   virtual T value(const Values& values,
 | |
|                   boost::optional<std::map<Key, Matrix>&> = boost::none) const = 0;
 | |
|   virtual ExpressionNode<T>* clone() const = 0;
 | |
| };
 | |
| 
 | |
| /// Constant Expression
 | |
| template<class T>
 | |
| class ConstantExpression : public ExpressionNode<T> {
 | |
| 
 | |
|   T value_;
 | |
| 
 | |
|  public:
 | |
| 
 | |
|   typedef T type;
 | |
| 
 | |
|   /// Constructor with a value, yielding a constant
 | |
|   ConstantExpression(const T& value) :
 | |
|     value_(value) {
 | |
|   }
 | |
|   virtual ~ConstantExpression(){}
 | |
| 
 | |
|   virtual void getKeys(std::set<Key>& /* keys */) const {}
 | |
|   virtual T value(const Values& values,
 | |
|                   boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
 | |
|     return value_;
 | |
|   }
 | |
|   virtual ExpressionNode<T>* clone() const { return new ConstantExpression(*this); }
 | |
| };
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| /// Leaf Expression
 | |
| template<class T>
 | |
| class LeafExpression : public ExpressionNode<T> {
 | |
| 
 | |
|   Key key_;
 | |
| 
 | |
|  public:
 | |
| 
 | |
|   typedef T type;
 | |
| 
 | |
|   /// Constructor with a single key
 | |
|   LeafExpression(Key key) :
 | |
|     key_(key) {
 | |
|   }
 | |
|   virtual ~LeafExpression(){}
 | |
| 
 | |
|   virtual void getKeys(std::set<Key>& keys) const { keys.insert(key_); }
 | |
|   virtual T value(const Values& values,
 | |
|                   boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
 | |
|     const T& value = values.at<T>(key_);
 | |
|     if( jacobians ) {
 | |
|       std::map<Key, Matrix>::iterator it = jacobians->find(key_);
 | |
|       if(it != jacobians->end()) {
 | |
|         it->second += Eigen::MatrixXd::Identity(value.dim(), value.dim());
 | |
|       } else {
 | |
|         (*jacobians)[key_] = Eigen::MatrixXd::Identity(value.dim(), value.dim());
 | |
|       }
 | |
|     }
 | |
|     return value;
 | |
|   }
 | |
| 
 | |
|   virtual ExpressionNode<T>* clone() const { return new LeafExpression(*this); }
 | |
| };
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| /// Unary Expression
 | |
| template<class T, class E>
 | |
| class UnaryExpression : public ExpressionNode<T> {
 | |
| 
 | |
|  public:
 | |
| 
 | |
|   typedef T (*function)(const E&, boost::optional<Matrix&>);
 | |
| 
 | |
|  private:
 | |
| 
 | |
|   boost::shared_ptr< ExpressionNode<E> > expression_;
 | |
|   function f_;
 | |
| 
 | |
|  public:
 | |
| 
 | |
|   typedef T type;
 | |
| 
 | |
|   /// Constructor with a single key
 | |
|   UnaryExpression(function f, const ExpressionNode<E>& expression) :
 | |
|     expression_(expression.clone()), f_(f) {
 | |
|   }
 | |
|   virtual ~UnaryExpression(){}
 | |
| 
 | |
|   virtual void getKeys(std::set<Key>& keys) const{ expression_->getKeys(keys); }
 | |
|   virtual T value(const Values& values,
 | |
|                   boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
 | |
| 
 | |
|     T value;
 | |
|     if(jacobians) {
 | |
|       Eigen::MatrixXd H;
 | |
|       value = f_(expression_->value(values, jacobians), H);
 | |
|       std::map<Key, Matrix>::iterator it = jacobians->begin();
 | |
|       for( ; it != jacobians->end(); ++it) {
 | |
|         it->second = H * it->second;
 | |
|       }
 | |
|     } else {
 | |
|       value = f_(expression_->value(values), boost::none);
 | |
|     }
 | |
|     return value;
 | |
|   }
 | |
| 
 | |
|   virtual ExpressionNode<T>* clone() const { return new UnaryExpression(*this); }
 | |
| };
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| /// Binary Expression
 | |
| 
 | |
| template<class T, class E1, class E2>
 | |
| class BinaryExpression : public ExpressionNode<T> {
 | |
| 
 | |
|  public:
 | |
| 
 | |
|   typedef T (*function)(const E1&, const E2&,
 | |
|       boost::optional<Matrix&>, boost::optional<Matrix&>);
 | |
| 
 | |
|  private:
 | |
| 
 | |
|   boost::shared_ptr< ExpressionNode<E1> > expression1_;
 | |
|   boost::shared_ptr< ExpressionNode<E2> > expression2_;
 | |
|   function f_;
 | |
| 
 | |
|  public:
 | |
| 
 | |
|   typedef T type;
 | |
| 
 | |
|   /// Constructor with a single key
 | |
|   BinaryExpression(function f, const ExpressionNode<E1>& expression1, const ExpressionNode<E2>& expression2) :
 | |
|     expression1_(expression1.clone()), expression2_(expression2.clone()), f_(f) {
 | |
|   }
 | |
|   virtual ~BinaryExpression(){}
 | |
| 
 | |
|   virtual void getKeys(std::set<Key>& keys) const{
 | |
|     expression1_->getKeys(keys);
 | |
|     expression2_->getKeys(keys);
 | |
|   }
 | |
|   virtual T value(const Values& values,
 | |
|                   boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
 | |
|     T val;
 | |
|     if(jacobians) {
 | |
|       std::map<Key, Matrix> terms1;
 | |
|       std::map<Key, Matrix> terms2;
 | |
|       Matrix H1, H2;
 | |
|       val = f_(expression1_->value(values, terms1), expression2_->value(values, terms2), H1, H2);
 | |
|       // TODO: both Jacobians and terms are sorted. There must be a simple
 | |
|       //       but fast algorithm that does this.
 | |
|       typedef std::pair<Key, Matrix> Pair;
 | |
|       BOOST_FOREACH(const Pair& term, terms1) {
 | |
|         std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
 | |
|         if(it != jacobians->end()) {
 | |
|           it->second += H1 * term.second;
 | |
|         } else {
 | |
|           (*jacobians)[term.first] = H1 * term.second;
 | |
|         }
 | |
|       }
 | |
|       BOOST_FOREACH(const Pair& term, terms2) {
 | |
|         std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
 | |
|         if(it != jacobians->end()) {
 | |
|           it->second += H2 * term.second;
 | |
|         } else {
 | |
|           (*jacobians)[term.first] = H2 * term.second;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       val = f_(expression1_->value(values), expression2_->value(values),
 | |
|                boost::none, boost::none);
 | |
|     }
 | |
|     return val;
 | |
|   }
 | |
| 
 | |
|   virtual ExpressionNode<T>* clone() const { return new BinaryExpression(*this); }
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| class Expression {
 | |
|  public:
 | |
|   Expression(const ExpressionNode<T>& root) {
 | |
|     root_.reset(root.clone());
 | |
|   }
 | |
| 
 | |
|   // Initialize a constant expression
 | |
|   Expression(const T& value) :
 | |
|     root_(new ConstantExpression<T>(value)){ }
 | |
| 
 | |
|   // Initialize a leaf expression
 | |
|   Expression(const Key& key) :
 | |
|     root_(new LeafExpression<T>(key)) {}
 | |
| 
 | |
|   /// Initialize a unary expression
 | |
|   template<typename E>
 | |
|   Expression(typename UnaryExpression<T,E>::function f,
 | |
|              const Expression<E>& expression) {
 | |
|     // TODO Assert that root of expression is not null.
 | |
|     root_.reset(new UnaryExpression<T,E>(f, *expression.root()));
 | |
|   }
 | |
| 
 | |
|   /// Initialize a binary expression
 | |
|   template<typename E1, typename E2>
 | |
|   Expression(typename BinaryExpression<T,E1,E2>::function f,
 | |
|              const Expression<E1>& expression1,
 | |
|              const Expression<E2>& expression2) {
 | |
|     // TODO Assert that root of expressions 1 and 2 are not null.
 | |
|     root_.reset(new BinaryExpression<T,E1,E2>(f, *expression1.root(),
 | |
|                                               *expression2.root()));
 | |
|   }
 | |
| 
 | |
|   void getKeys(std::set<Key>& keys) const { root_->getKeys(keys); }
 | |
|   T value(const Values& values,
 | |
|           boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
 | |
|     return root_->value(values, jacobians);
 | |
|   }
 | |
| 
 | |
|   const boost::shared_ptr<ExpressionNode<T> >& root() const{ return root_; }
 | |
|  private:
 | |
|   boost::shared_ptr<ExpressionNode<T> > root_;
 | |
| };
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| void printPair(std::pair<Key, Matrix> pair) {
 | |
|   std::cout << pair.first << ": " << pair.second << std::endl;
 | |
| }
 | |
| // usage: std::for_each(terms.begin(), terms.end(), printPair);
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| /// AD Factor
 | |
| template<class T>
 | |
| class BADFactor: NonlinearFactor {
 | |
| 
 | |
|   const T measurement_;
 | |
|   const Expression<T> expression_;
 | |
| 
 | |
|   /// get value from expression and calculate error with respect to measurement
 | |
|   Vector unwhitenedError(const Values& values) const {
 | |
|     const T& value = expression_.value(values);
 | |
|     return value.localCoordinates(measurement_);
 | |
|   }
 | |
| 
 | |
|  public:
 | |
| 
 | |
|   /// Constructor
 | |
|   BADFactor(const T& measurement, const Expression<T>& expression) :
 | |
|     measurement_(measurement), expression_(expression) {
 | |
|   }
 | |
|   /// Constructor
 | |
|   BADFactor(const T& measurement, const ExpressionNode<T>& expression) :
 | |
|     measurement_(measurement), expression_(expression) {
 | |
|   }
 | |
|   /**
 | |
|    * Calculate the error of the factor.
 | |
|    * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
 | |
|    * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
 | |
|    * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
 | |
|    */
 | |
|   virtual double error(const Values& values) const {
 | |
|     if (this->active(values)) {
 | |
|       const Vector e = unwhitenedError(values);
 | |
|       return 0.5 * e.squaredNorm();
 | |
|     } else {
 | |
|       return 0.0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// get the dimension of the factor (number of rows on linearization)
 | |
|   size_t dim() const {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// linearize to a GaussianFactor
 | |
|   boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
 | |
|     // We will construct an n-ary factor below, where  terms is a container whose
 | |
|     // value type is std::pair<Key, Matrix>, specifying the
 | |
|     // collection of keys and matrices making up the factor.
 | |
|     std::map<Key, Matrix> terms;
 | |
|     expression_.value(values, terms);
 | |
|     Vector b = unwhitenedError(values);
 | |
|     SharedDiagonal model = SharedDiagonal();
 | |
|     return boost::shared_ptr<JacobianFactor>(
 | |
|         new JacobianFactor(terms, b, model));
 | |
|   }
 | |
| 
 | |
| };
 | |
| }
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| Point3 transformTo(const Pose3& x, const Point3& p,
 | |
|                    boost::optional<Matrix&> Dpose, boost::optional<Matrix&> Dpoint) {
 | |
|   return x.transform_to(p, Dpose, Dpoint);
 | |
| }
 | |
| 
 | |
| Point2 project(const Point3& p, boost::optional<Matrix&> Dpoint) {
 | |
|   return PinholeCamera<Cal3_S2>::project_to_camera(p, Dpoint);
 | |
| }
 | |
| 
 | |
| template<class CAL>
 | |
| Point2 uncalibrate(const CAL& K, const Point2& p, boost::optional<Matrix&> Dcal,
 | |
|                    boost::optional<Matrix&> Dp) {
 | |
|   return K.uncalibrate(p, Dcal, Dp);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| TEST(BAD, test) {
 | |
| 
 | |
|   // Create some values
 | |
|   Values values;
 | |
|   values.insert(1, Pose3());
 | |
|   values.insert(2, Point3(0, 0, 1));
 | |
|   values.insert(3, Cal3_S2());
 | |
| 
 | |
|   // Create old-style factor to create expected value and derivatives
 | |
|   Point2 measured(-17, 30);
 | |
|   SharedNoiseModel model = noiseModel::Unit::Create(2);
 | |
|   GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
 | |
|   double expected_error = old.error(values);
 | |
|   GaussianFactor::shared_ptr expected = old.linearize(values);
 | |
| 
 | |
|   // Create leaves
 | |
|   Expression<Pose3> x(1);
 | |
|   Expression<Point3> p(2);
 | |
|   Expression<Cal3_S2> K(3);
 | |
| 
 | |
|   // Create expression tree
 | |
|   Expression<Point3> p_cam(transformTo, x, p);
 | |
|   Expression<Point2> projection(project, p_cam);
 | |
|   Expression<Point2> uv_hat(uncalibrate, K, projection);
 | |
| 
 | |
|   // Check getKeys
 | |
|   std::set<Key> keys;
 | |
|   uv_hat.getKeys(keys);
 | |
|   EXPECT_LONGS_EQUAL(3, keys.size());
 | |
| 
 | |
|   // Create factor
 | |
|   BADFactor<Point2> f(measured, uv_hat);
 | |
| 
 | |
|   // Check value
 | |
|   EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
 | |
| 
 | |
|   // Check dimension
 | |
|   EXPECT_LONGS_EQUAL(0, f.dim());
 | |
| 
 | |
|   // Check linearization
 | |
|   boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
 | |
|   EXPECT( assert_equal(*expected, *gf, 1e-9));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |