74 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Simple robotics example using the pre-built planar SLAM domain
 | |
| % @author Alex Cunningham
 | |
| % @author Frank Dellaert
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| %% Assumptions
 | |
| %  - All values are axis aligned
 | |
| %  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | |
| %  - We have bearing and range information for measurements
 | |
| %  - We have full odometry for measurements
 | |
| %  - The robot and landmarks are on a grid, moving 2 meters each step
 | |
| %  - Landmarks are 2 meters away from the robot trajectory
 | |
| 
 | |
| %% Create keys for variables
 | |
| i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
 | |
| j1 = symbol('l',1); j2 = symbol('l',2);
 | |
| 
 | |
| %% Create graph container and add factors to it
 | |
| graph = planarSLAM.Graph;
 | |
| 
 | |
| %% Add prior
 | |
| import gtsam.*
 | |
| priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
 | |
| priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
 | |
| graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph
 | |
| 
 | |
| %% Add odometry
 | |
| import gtsam.*
 | |
| odometry = Pose2(2.0, 0.0, 0.0);
 | |
| odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
 | |
| graph.addRelativePose(i1, i2, odometry, odometryNoise);
 | |
| graph.addRelativePose(i2, i3, odometry, odometryNoise);
 | |
| 
 | |
| %% Add bearing/range measurement factors
 | |
| import gtsam.*
 | |
| degrees = pi/180;
 | |
| brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
 | |
| graph.addBearingRange(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise);
 | |
| graph.addBearingRange(i2, j1, Rot2(90*degrees), 2, brNoise);
 | |
| graph.addBearingRange(i3, j2, Rot2(90*degrees), 2, brNoise);
 | |
| 
 | |
| %% Initialize to noisy points
 | |
| import gtsam.*
 | |
| initialEstimate = planarSLAM.Values;
 | |
| initialEstimate.insertPose(i1, Pose2(0.5, 0.0, 0.2));
 | |
| initialEstimate.insertPose(i2, Pose2(2.3, 0.1,-0.2));
 | |
| initialEstimate.insertPose(i3, Pose2(4.1, 0.1, 0.1));
 | |
| initialEstimate.insertPoint(j1, Point2(1.8, 2.1));
 | |
| initialEstimate.insertPoint(j2, Point2(4.1, 1.8));
 | |
| 
 | |
| %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | |
| result = graph.optimize(initialEstimate,0);
 | |
| marginals = graph.marginals(result);
 | |
| 
 | |
| %% Check first pose and point equality
 | |
| import gtsam.*
 | |
| pose_1 = result.pose(symbol('x',1));
 | |
| marginals.marginalCovariance(symbol('x',1));
 | |
| CHECK('pose_1.equals(Pose2,1e-4)',pose_1.equals(Pose2,1e-4));
 | |
| 
 | |
| point_1 = result.point(symbol('l',1));
 | |
| marginals.marginalCovariance(symbol('l',1));
 | |
| CHECK('point_1.equals(Point2(2,2),1e-4)',point_1.equals(Point2(2,2),1e-4));
 | |
| 
 | |
| 
 |