146 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    VisualISAM2Example.cpp
 | |
|  * @brief   A visualSLAM example for the structure-from-motion problem on a
 | |
|  * simulated dataset This version uses iSAM2 to solve the problem incrementally
 | |
|  * @author  Duy-Nguyen Ta
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * A structure-from-motion example with landmarks
 | |
|  *  - The landmarks form a 10 meter cube
 | |
|  *  - The robot rotates around the landmarks, always facing towards the cube
 | |
|  */
 | |
| 
 | |
| // For loading the data
 | |
| #include "SFMdata.h"
 | |
| 
 | |
| // Camera observations of landmarks will be stored as Point2 (x, y).
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| // Each variable in the system (poses and landmarks) must be identified with a
 | |
| // unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
 | |
| // (X1, X2, L1). Here we will use Symbols
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| // We want to use iSAM2 to solve the structure-from-motion problem
 | |
| // incrementally, so include iSAM2 here
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| 
 | |
| // iSAM2 requires as input a set of new factors to be added stored in a factor
 | |
| // graph, and initial guesses for any new variables used in the added factors
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| 
 | |
| // In GTSAM, measurement functions are represented as 'factors'. Several common
 | |
| // factors have been provided with the library for solving robotics/SLAM/Bundle
 | |
| // Adjustment problems. Here we will use Projection factors to model the
 | |
| // camera's landmark observations. Also, we will initialize the robot at some
 | |
| // location using a Prior factor.
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
|   // Define the camera calibration parameters
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
 | |
| 
 | |
|   // Define the camera observation noise model, 1 pixel stddev
 | |
|   auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
 | |
| 
 | |
|   // Create the set of ground-truth landmarks
 | |
|   vector<Point3> points = createPoints();
 | |
| 
 | |
|   // Create the set of ground-truth poses
 | |
|   vector<Pose3> poses = createPoses();
 | |
| 
 | |
|   // Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
 | |
|   // to maintain proper linearization and efficient variable ordering, iSAM2
 | |
|   // performs partial relinearization/reordering at each step. A parameter
 | |
|   // structure is available that allows the user to set various properties, such
 | |
|   // as the relinearization threshold and type of linear solver. For this
 | |
|   // example, we we set the relinearization threshold small so the iSAM2 result
 | |
|   // will approach the batch result.
 | |
|   ISAM2Params parameters;
 | |
|   parameters.relinearizeThreshold = 0.01;
 | |
|   parameters.relinearizeSkip = 1;
 | |
|   ISAM2 isam(parameters);
 | |
| 
 | |
|   // Create a Factor Graph and Values to hold the new data
 | |
|   NonlinearFactorGraph graph;
 | |
|   Values initialEstimate;
 | |
| 
 | |
|   // Loop over the poses, adding the observations to iSAM incrementally
 | |
|   for (size_t i = 0; i < poses.size(); ++i) {
 | |
|     // Add factors for each landmark observation
 | |
|     for (size_t j = 0; j < points.size(); ++j) {
 | |
|       PinholeCamera<Cal3_S2> camera(poses[i], *K);
 | |
|       Point2 measurement = camera.project(points[j]);
 | |
|       graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(
 | |
|           measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
 | |
|     }
 | |
| 
 | |
|     // Add an initial guess for the current pose
 | |
|     // Intentionally initialize the variables off from the ground truth
 | |
|     static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
 | |
|                             Point3(0.05, -0.10, 0.20));
 | |
|     initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose);
 | |
| 
 | |
|     // If this is the first iteration, add a prior on the first pose to set the
 | |
|     // coordinate frame and a prior on the first landmark to set the scale Also,
 | |
|     // as iSAM solves incrementally, we must wait until each is observed at
 | |
|     // least twice before adding it to iSAM.
 | |
|     if (i == 0) {
 | |
|       // Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
 | |
|       static auto kPosePrior = noiseModel::Diagonal::Sigmas(
 | |
|           (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3))
 | |
|               .finished());
 | |
|       graph.addPrior(Symbol('x', 0), poses[0], kPosePrior);
 | |
| 
 | |
|       // Add a prior on landmark l0
 | |
|       static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
 | |
|       graph.addPrior(Symbol('l', 0), points[0], kPointPrior);
 | |
| 
 | |
|       // Add initial guesses to all observed landmarks
 | |
|       // Intentionally initialize the variables off from the ground truth
 | |
|       static Point3 kDeltaPoint(-0.25, 0.20, 0.15);
 | |
|       for (size_t j = 0; j < points.size(); ++j)
 | |
|         initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint);
 | |
| 
 | |
|     } else {
 | |
|       // Update iSAM with the new factors
 | |
|       isam.update(graph, initialEstimate);
 | |
|       // Each call to iSAM2 update(*) performs one iteration of the iterative
 | |
|       // nonlinear solver. If accuracy is desired at the expense of time,
 | |
|       // update(*) can be called additional times to perform multiple optimizer
 | |
|       // iterations every step.
 | |
|       isam.update();
 | |
|       Values currentEstimate = isam.calculateEstimate();
 | |
|       cout << "****************************************************" << endl;
 | |
|       cout << "Frame " << i << ": " << endl;
 | |
|       currentEstimate.print("Current estimate: ");
 | |
| 
 | |
|       // Clear the factor graph and values for the next iteration
 | |
|       graph.resize(0);
 | |
|       initialEstimate.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 |