92 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Simple robotics example using the pre-built planar SLAM domain
 | |
| % @author Alex Cunningham
 | |
| % @author Frank Dellaert
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| %% Assumptions
 | |
| %  - All values are axis aligned
 | |
| %  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | |
| %  - We have bearing and range information for measurements
 | |
| %  - We have full odometry for measurements
 | |
| %  - The robot and landmarks are on a grid, moving 2 meters each step
 | |
| %  - Landmarks are 2 meters away from the robot trajectory
 | |
| 
 | |
| %% Create keys for variables
 | |
| i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
 | |
| j1 = symbol('l',1); j2 = symbol('l',2);
 | |
| 
 | |
| %% Create graph container and add factors to it
 | |
| graph = planarSLAMGraph;
 | |
| 
 | |
| %% Add prior
 | |
| priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin
 | |
| priorNoise = gtsamnoiseModelDiagonal_Sigmas([0.3; 0.3; 0.1]);
 | |
| graph.addPrior(i1, priorMean, priorNoise); % add directly to graph
 | |
| 
 | |
| %% Add odometry
 | |
| odometry = gtsamPose2(2.0, 0.0, 0.0);
 | |
| odometryNoise = gtsamnoiseModelDiagonal_Sigmas([0.2; 0.2; 0.1]);
 | |
| graph.addOdometry(i1, i2, odometry, odometryNoise);
 | |
| graph.addOdometry(i2, i3, odometry, odometryNoise);
 | |
| 
 | |
| %% Add bearing/range measurement factors
 | |
| degrees = pi/180;
 | |
| noiseModel = gtsamnoiseModelDiagonal_Sigmas([0.1; 0.2]);
 | |
| graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel);
 | |
| graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel);
 | |
| graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel);
 | |
| 
 | |
| % print
 | |
| graph.print(sprintf('\nFull graph:\n'));
 | |
| 
 | |
| %% Initialize to noisy points
 | |
| initialEstimate = planarSLAMValues;
 | |
| initialEstimate.insertPose(i1, gtsamPose2(0.5, 0.0, 0.2));
 | |
| initialEstimate.insertPose(i2, gtsamPose2(2.3, 0.1,-0.2));
 | |
| initialEstimate.insertPose(i3, gtsamPose2(4.1, 0.1, 0.1));
 | |
| initialEstimate.insertPoint(j1, gtsamPoint2(1.8, 2.1));
 | |
| initialEstimate.insertPoint(j2, gtsamPoint2(4.1, 1.8));
 | |
| 
 | |
| initialEstimate.print(sprintf('\nInitial estimate:\n'));
 | |
| 
 | |
| %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | |
| result = graph.optimize(initialEstimate);
 | |
| result.print(sprintf('\nFinal result:\n'));
 | |
| 
 | |
| %% Plot Covariance Ellipses
 | |
| cla;hold on
 | |
| marginals = graph.marginals(result);
 | |
| for i=1:3
 | |
|     key = symbol('x',i);
 | |
|     pose{i} = result.pose(key);
 | |
|     P{i}=marginals.marginalCovariance(key);
 | |
|     if i>1
 | |
|         plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-');
 | |
|     end
 | |
| end
 | |
| for i=1:3
 | |
|     plotPose2(pose{i},'g',P{i})
 | |
| end
 | |
| point = {};
 | |
| for j=1:2
 | |
|     key = symbol('l',j);
 | |
|     point{j} = result.point(key);
 | |
|     Q{j}=marginals.marginalCovariance(key);
 | |
|     plotPoint2(point{j},'b',Q{j})
 | |
| end
 | |
| plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-');
 | |
| plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-');
 | |
| plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-');
 | |
| axis([-0.6 4.8 -1 1])
 | |
| axis equal
 | |
| view(2)
 | |
| 
 |