360 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			360 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file IMUKittiExampleGPS
 | |
|  * @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE
 | |
|  * @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ Electronics
 | |
|  */
 | |
| 
 | |
| // GTSAM related includes.
 | |
| #include <gtsam/navigation/CombinedImuFactor.h>
 | |
| #include <gtsam/navigation/GPSFactor.h>
 | |
| #include <gtsam/navigation/ImuFactor.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| #include <gtsam/nonlinear/ISAM2Params.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| using symbol_shorthand::X;  // Pose3 (x,y,z,r,p,y)
 | |
| using symbol_shorthand::V;  // Vel   (xdot,ydot,zdot)
 | |
| using symbol_shorthand::B;  // Bias  (ax,ay,az,gx,gy,gz)
 | |
| 
 | |
| struct KittiCalibration {
 | |
|     double body_ptx;
 | |
|     double body_pty;
 | |
|     double body_ptz;
 | |
|     double body_prx;
 | |
|     double body_pry;
 | |
|     double body_prz;
 | |
|     double accelerometer_sigma;
 | |
|     double gyroscope_sigma;
 | |
|     double integration_sigma;
 | |
|     double accelerometer_bias_sigma;
 | |
|     double gyroscope_bias_sigma;
 | |
|     double average_delta_t;
 | |
| };
 | |
| 
 | |
| struct ImuMeasurement {
 | |
|     double time;
 | |
|     double dt;
 | |
|     Vector3 accelerometer;
 | |
|     Vector3 gyroscope;  // omega
 | |
| };
 | |
| 
 | |
| struct GpsMeasurement {
 | |
|     double time;
 | |
|     Vector3 position;  // x,y,z
 | |
| };
 | |
| 
 | |
| const string output_filename = "IMUKittiExampleGPSResults.csv";
 | |
| 
 | |
| void loadKittiData(KittiCalibration& kitti_calibration,
 | |
|                    vector<ImuMeasurement>& imu_measurements,
 | |
|                    vector<GpsMeasurement>& gps_measurements) {
 | |
|     string line;
 | |
| 
 | |
|     // Read IMU metadata and compute relative sensor pose transforms
 | |
|     // BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma GyroscopeSigma IntegrationSigma
 | |
|     // AccelerometerBiasSigma GyroscopeBiasSigma AverageDeltaT
 | |
|     string imu_metadata_file = findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
 | |
|     ifstream imu_metadata(imu_metadata_file.c_str());
 | |
| 
 | |
|     printf("-- Reading sensor metadata\n");
 | |
| 
 | |
|     getline(imu_metadata, line, '\n');  // ignore the first line
 | |
| 
 | |
|     // Load Kitti calibration
 | |
|     getline(imu_metadata, line, '\n');
 | |
|     sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
 | |
|            &kitti_calibration.body_ptx,
 | |
|            &kitti_calibration.body_pty,
 | |
|            &kitti_calibration.body_ptz,
 | |
|            &kitti_calibration.body_prx,
 | |
|            &kitti_calibration.body_pry,
 | |
|            &kitti_calibration.body_prz,
 | |
|            &kitti_calibration.accelerometer_sigma,
 | |
|            &kitti_calibration.gyroscope_sigma,
 | |
|            &kitti_calibration.integration_sigma,
 | |
|            &kitti_calibration.accelerometer_bias_sigma,
 | |
|            &kitti_calibration.gyroscope_bias_sigma,
 | |
|            &kitti_calibration.average_delta_t);
 | |
|     printf("IMU metadata: %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n",
 | |
|            kitti_calibration.body_ptx,
 | |
|            kitti_calibration.body_pty,
 | |
|            kitti_calibration.body_ptz,
 | |
|            kitti_calibration.body_prx,
 | |
|            kitti_calibration.body_pry,
 | |
|            kitti_calibration.body_prz,
 | |
|            kitti_calibration.accelerometer_sigma,
 | |
|            kitti_calibration.gyroscope_sigma,
 | |
|            kitti_calibration.integration_sigma,
 | |
|            kitti_calibration.accelerometer_bias_sigma,
 | |
|            kitti_calibration.gyroscope_bias_sigma,
 | |
|            kitti_calibration.average_delta_t);
 | |
| 
 | |
|     // Read IMU data
 | |
|     // Time dt accelX accelY accelZ omegaX omegaY omegaZ
 | |
|     string imu_data_file = findExampleDataFile("KittiEquivBiasedImu.txt");
 | |
|     printf("-- Reading IMU measurements from file\n");
 | |
|     {
 | |
|         ifstream imu_data(imu_data_file.c_str());
 | |
|         getline(imu_data, line, '\n');  // ignore the first line
 | |
| 
 | |
|         double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0, gyro_y = 0, gyro_z = 0;
 | |
|         while (!imu_data.eof()) {
 | |
|             getline(imu_data, line, '\n');
 | |
|             sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf",
 | |
|                    &time, &dt,
 | |
|                    &acc_x, &acc_y, &acc_z,
 | |
|                    &gyro_x, &gyro_y, &gyro_z);
 | |
| 
 | |
|             ImuMeasurement measurement;
 | |
|             measurement.time = time;
 | |
|             measurement.dt = dt;
 | |
|             measurement.accelerometer = Vector3(acc_x, acc_y, acc_z);
 | |
|             measurement.gyroscope = Vector3(gyro_x, gyro_y, gyro_z);
 | |
|             imu_measurements.push_back(measurement);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Read GPS data
 | |
|     // Time,X,Y,Z
 | |
|     string gps_data_file = findExampleDataFile("KittiGps_converted.txt");
 | |
|     printf("-- Reading GPS measurements from file\n");
 | |
|     {
 | |
|         ifstream gps_data(gps_data_file.c_str());
 | |
|         getline(gps_data, line, '\n');  // ignore the first line
 | |
| 
 | |
|         double time = 0, gps_x = 0, gps_y = 0, gps_z = 0;
 | |
|         while (!gps_data.eof()) {
 | |
|             getline(gps_data, line, '\n');
 | |
|             sscanf(line.c_str(), "%lf,%lf,%lf,%lf", &time, &gps_x, &gps_y, &gps_z);
 | |
| 
 | |
|             GpsMeasurement measurement;
 | |
|             measurement.time = time;
 | |
|             measurement.position = Vector3(gps_x, gps_y, gps_z);
 | |
|             gps_measurements.push_back(measurement);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|     KittiCalibration kitti_calibration;
 | |
|     vector<ImuMeasurement> imu_measurements;
 | |
|     vector<GpsMeasurement> gps_measurements;
 | |
|     loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
 | |
| 
 | |
|     Vector6 BodyP = (Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty, kitti_calibration.body_ptz,
 | |
|                                   kitti_calibration.body_prx, kitti_calibration.body_pry, kitti_calibration.body_prz)
 | |
|                     .finished();
 | |
|     auto body_T_imu = Pose3::Expmap(BodyP);
 | |
|     if (!body_T_imu.equals(Pose3(), 1e-5)) {
 | |
|         printf("Currently only support IMUinBody is identity, i.e. IMU and body frame are the same");
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     // Configure different variables
 | |
|     // double t_offset = gps_measurements[0].time;
 | |
|     size_t first_gps_pose = 1;
 | |
|     size_t gps_skip = 10;  // Skip this many GPS measurements each time
 | |
|     double g = 9.8;
 | |
|     auto w_coriolis = Vector3::Zero();  // zero vector
 | |
| 
 | |
|     // Configure noise models
 | |
|     auto noise_model_gps = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
 | |
|                                                                           Vector3::Constant(1.0/0.07))
 | |
|                                                             .finished());
 | |
| 
 | |
|     // Set initial conditions for the estimated trajectory
 | |
|     // initial pose is the reference frame (navigation frame)
 | |
|     auto current_pose_global = Pose3(Rot3(), gps_measurements[first_gps_pose].position);
 | |
|     // the vehicle is stationary at the beginning at position 0,0,0
 | |
|     Vector3 current_velocity_global = Vector3::Zero();
 | |
|     auto current_bias = imuBias::ConstantBias();  // init with zero bias
 | |
| 
 | |
|     auto sigma_init_x = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
 | |
|                                                                        Vector3::Constant(1.0))
 | |
|                                                          .finished());
 | |
|     auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
 | |
|     auto sigma_init_b = noiseModel::Diagonal::Sigmas((Vector6() << Vector3::Constant(0.100),
 | |
|                                                                    Vector3::Constant(5.00e-05))
 | |
|                                                      .finished());
 | |
| 
 | |
|     // Set IMU preintegration parameters
 | |
|     Matrix33 measured_acc_cov = I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
 | |
|     Matrix33 measured_omega_cov = I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
 | |
|     // error committed in integrating position from velocities
 | |
|     Matrix33 integration_error_cov = I_3x3 * pow(kitti_calibration.integration_sigma, 2);
 | |
| 
 | |
|     auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
 | |
|     imu_params->accelerometerCovariance = measured_acc_cov;     // acc white noise in continuous
 | |
|     imu_params->integrationCovariance = integration_error_cov;  // integration uncertainty continuous
 | |
|     imu_params->gyroscopeCovariance = measured_omega_cov;       // gyro white noise in continuous
 | |
|     imu_params->omegaCoriolis = w_coriolis;
 | |
| 
 | |
|     std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement = nullptr;
 | |
| 
 | |
|     // Set ISAM2 parameters and create ISAM2 solver object
 | |
|     ISAM2Params isam_params;
 | |
|     isam_params.factorization = ISAM2Params::CHOLESKY;
 | |
|     isam_params.relinearizeSkip = 10;
 | |
| 
 | |
|     ISAM2 isam(isam_params);
 | |
| 
 | |
|     // Create the factor graph and values object that will store new factors and values to add to the incremental graph
 | |
|     NonlinearFactorGraph new_factors;
 | |
|     Values new_values;  // values storing the initial estimates of new nodes in the factor graph
 | |
| 
 | |
|     /// Main loop:
 | |
|     /// (1) we read the measurements
 | |
|     /// (2) we create the corresponding factors in the graph
 | |
|     /// (3) we solve the graph to obtain and optimal estimate of robot trajectory
 | |
|     printf("-- Starting main loop: inference is performed at each time step, but we plot trajectory every 10 steps\n");
 | |
|     size_t j = 0;
 | |
|     for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
 | |
|         // At each non=IMU measurement we initialize a new node in the graph
 | |
|         auto current_pose_key = X(i);
 | |
|         auto current_vel_key = V(i);
 | |
|         auto current_bias_key = B(i);
 | |
|         double t = gps_measurements[i].time;
 | |
| 
 | |
|         if (i == first_gps_pose) {
 | |
|             // Create initial estimate and prior on initial pose, velocity, and biases
 | |
|             new_values.insert(current_pose_key, current_pose_global);
 | |
|             new_values.insert(current_vel_key, current_velocity_global);
 | |
|             new_values.insert(current_bias_key, current_bias);
 | |
|             new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, current_pose_global, sigma_init_x);
 | |
|             new_factors.emplace_shared<PriorFactor<Vector3>>(current_vel_key, current_velocity_global, sigma_init_v);
 | |
|             new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(current_bias_key, current_bias, sigma_init_b);
 | |
|         } else {
 | |
|             double t_previous = gps_measurements[i-1].time;
 | |
| 
 | |
|             // Summarize IMU data between the previous GPS measurement and now
 | |
|             current_summarized_measurement = std::make_shared<PreintegratedImuMeasurements>(imu_params, current_bias);
 | |
|             static size_t included_imu_measurement_count = 0;
 | |
|             while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
 | |
|                 if (imu_measurements[j].time >= t_previous) {
 | |
|                     current_summarized_measurement->integrateMeasurement(imu_measurements[j].accelerometer,
 | |
|                                                                          imu_measurements[j].gyroscope,
 | |
|                                                                          imu_measurements[j].dt);
 | |
|                     included_imu_measurement_count++;
 | |
|                 }
 | |
|                 j++;
 | |
|             }
 | |
| 
 | |
|             // Create IMU factor
 | |
|             auto previous_pose_key = X(i-1);
 | |
|             auto previous_vel_key = V(i-1);
 | |
|             auto previous_bias_key = B(i-1);
 | |
| 
 | |
|             new_factors.emplace_shared<ImuFactor>(previous_pose_key, previous_vel_key,
 | |
|                                                   current_pose_key, current_vel_key,
 | |
|                                                   previous_bias_key, *current_summarized_measurement);
 | |
| 
 | |
|             // Bias evolution as given in the IMU metadata
 | |
|             auto sigma_between_b = noiseModel::Diagonal::Sigmas((Vector6() <<
 | |
|                    Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.accelerometer_bias_sigma),
 | |
|                    Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.gyroscope_bias_sigma))
 | |
|                  .finished());
 | |
|             new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(previous_bias_key,
 | |
|                                                                              current_bias_key,
 | |
|                                                                              imuBias::ConstantBias(),
 | |
|                                                                              sigma_between_b);
 | |
| 
 | |
|             // Create GPS factor
 | |
|             auto gps_pose = Pose3(current_pose_global.rotation(), gps_measurements[i].position);
 | |
|             if ((i % gps_skip) == 0) {
 | |
|                 new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, gps_pose, noise_model_gps);
 | |
|                 new_values.insert(current_pose_key, gps_pose);
 | |
| 
 | |
|                 printf("################ POSE INCLUDED AT TIME %lf ################\n", t);
 | |
|                 cout << gps_pose.translation();
 | |
|                 printf("\n\n");
 | |
|             } else {
 | |
|                 new_values.insert(current_pose_key, current_pose_global);
 | |
|             }
 | |
| 
 | |
|             // Add initial values for velocity and bias based on the previous estimates
 | |
|             new_values.insert(current_vel_key, current_velocity_global);
 | |
|             new_values.insert(current_bias_key, current_bias);
 | |
| 
 | |
|             // Update solver
 | |
|             // =======================================================================
 | |
|             // We accumulate 2*GPSskip GPS measurements before updating the solver at
 | |
|             // first so that the heading becomes observable.
 | |
|             if (i > (first_gps_pose + 2*gps_skip)) {
 | |
|                 printf("################ NEW FACTORS AT TIME %lf ################\n", t);
 | |
|                 new_factors.print();
 | |
| 
 | |
|                 isam.update(new_factors, new_values);
 | |
| 
 | |
|                 // Reset the newFactors and newValues list
 | |
|                 new_factors.resize(0);
 | |
|                 new_values.clear();
 | |
| 
 | |
|                 // Extract the result/current estimates
 | |
|                 Values result = isam.calculateEstimate();
 | |
| 
 | |
|                 current_pose_global = result.at<Pose3>(current_pose_key);
 | |
|                 current_velocity_global = result.at<Vector3>(current_vel_key);
 | |
|                 current_bias = result.at<imuBias::ConstantBias>(current_bias_key);
 | |
| 
 | |
|                 printf("\n################ POSE AT TIME %lf ################\n", t);
 | |
|                 current_pose_global.print();
 | |
|                 printf("\n\n");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Save results to file
 | |
|     printf("\nWriting results to file...\n");
 | |
|     FILE* fp_out = fopen(output_filename.c_str(), "w+");
 | |
|     fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
 | |
| 
 | |
|     Values result = isam.calculateEstimate();
 | |
|     for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
 | |
|         auto pose_key = X(i);
 | |
|         auto vel_key = V(i);
 | |
|         auto bias_key = B(i);
 | |
| 
 | |
|         auto pose = result.at<Pose3>(pose_key);
 | |
|         auto velocity = result.at<Vector3>(vel_key);
 | |
|         auto bias = result.at<imuBias::ConstantBias>(bias_key);
 | |
| 
 | |
|         auto pose_quat = pose.rotation().toQuaternion();
 | |
|         auto gps = gps_measurements[i].position;
 | |
| 
 | |
|         cout << "State at #" << i << endl;
 | |
|         cout << "Pose:" << endl << pose << endl;
 | |
|         cout << "Velocity:" << endl << velocity << endl;
 | |
|         cout << "Bias:" << endl << bias << endl;
 | |
| 
 | |
|         fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
 | |
|                 gps_measurements[i].time,
 | |
|                 pose.x(), pose.y(), pose.z(),
 | |
|                 pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(),
 | |
|                 gps(0), gps(1), gps(2));
 | |
|     }
 | |
| 
 | |
|     fclose(fp_out);
 | |
| }
 |