810 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			810 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  *  @file   testGaussianFactor.cpp
 | |
|  *  @brief  Unit tests for Linear Factor
 | |
|  *  @author Christian Potthast
 | |
|  *  @author Frank Dellaert
 | |
|  **/
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/set.hpp>
 | |
| #include <boost/assign/std/map.hpp> // for insert
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include "Matrix.h"
 | |
| #include "Ordering.h"
 | |
| #include "GaussianConditional.h"
 | |
| #include "smallExample.h"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| using namespace boost;
 | |
| 
 | |
| static SharedDiagonal
 | |
| 	sigma0_1 = sharedSigma(2,0.1), sigma_02 = sharedSigma(2,0.2),
 | |
| 	constraintModel = noiseModel::Constrained::All(2);
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, linearFactor )
 | |
| {
 | |
| 	Matrix I = eye(2);
 | |
| 	Vector b = Vector_(2, 2.0, -1.0);
 | |
| 	GaussianFactor expected("x1", -10*I,"x2", 10*I, b, noiseModel::Unit::Create(2));
 | |
| 
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 
 | |
| 	// check if the two factors are the same
 | |
| 	CHECK(assert_equal(expected,*lf));
 | |
| }
 | |
| 
 | |
| TEST( GaussianFactor, constructor)
 | |
| {
 | |
| 	Vector b = Vector_(3, 1., 2., 3.);
 | |
| 	SharedDiagonal noise = noiseModel::Diagonal::Sigmas(Vector_(3,1.,1.,1.));
 | |
| 	Symbol x0('x',0), x1('x',1);
 | |
| 	std::list<std::pair<Symbol, Matrix> > terms;
 | |
| 	terms.push_back(make_pair(x0, eye(2)));
 | |
| 	terms.push_back(make_pair(x1, 2.*eye(2)));
 | |
| 	GaussianFactor actual(terms, b, noise);
 | |
| 	GaussianFactor expected(x0, eye(2), x1, 2.*eye(2), b, noise);
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, operators )
 | |
| {
 | |
| 	Matrix I = eye(2);
 | |
| 	Vector b = Vector_(2,0.2,-0.1);
 | |
| 	GaussianFactor lf("x1", -I, "x2", I, b, sigma0_1);
 | |
| 
 | |
| 	VectorConfig c;
 | |
| 	c.insert("x1",Vector_(2,10.,20.));
 | |
| 	c.insert("x2",Vector_(2,30.,60.));
 | |
| 
 | |
| 	// test A*x
 | |
| 	Vector expectedE = Vector_(2,200.,400.), e = lf*c;
 | |
| 	CHECK(assert_equal(expectedE,e));
 | |
| 
 | |
| 	// test A^e
 | |
| 	VectorConfig expectedX;
 | |
| 	expectedX.insert("x1",Vector_(2,-2000.,-4000.));
 | |
| 	expectedX.insert("x2",Vector_(2, 2000., 4000.));
 | |
| 	CHECK(assert_equal(expectedX,lf^e));
 | |
| 
 | |
| 	// test transposeMultiplyAdd
 | |
| 	VectorConfig x;
 | |
| 	x.insert("x1",Vector_(2, 1.,2.));
 | |
| 	x.insert("x2",Vector_(2, 3.,4.));
 | |
| 	VectorConfig expectedX2 = x + 0.1 * (lf^e);
 | |
| 	lf.transposeMultiplyAdd(0.1,e,x);
 | |
| 	CHECK(assert_equal(expectedX2,x));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, keys )
 | |
| {
 | |
| 	// get the factor "f2" from the small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 	list<Symbol> expected;
 | |
| 	expected.push_back("x1");
 | |
| 	expected.push_back("x2");
 | |
| 	CHECK(lf->keys() == expected);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, dimensions )
 | |
| {
 | |
|   // get the factor "f2" from the small linear factor graph
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // Check a single factor
 | |
|   Dimensions expected;
 | |
|   insert(expected)("x1", 2)("x2", 2);
 | |
|   Dimensions actual = fg[1]->dimensions();
 | |
|   CHECK(expected==actual);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, getDim )
 | |
| {
 | |
| 	// get a factor
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 	GaussianFactor::shared_ptr factor = fg[0];
 | |
| 
 | |
| 	// get the size of a variable
 | |
| 	size_t actual = factor->getDim("x1");
 | |
| 
 | |
| 	// verify
 | |
| 	size_t expected = 2;
 | |
| 	CHECK(actual == expected);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, combine )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get two factors from it and insert the factors into a vector
 | |
| 	vector<GaussianFactor::shared_ptr> lfg;
 | |
| 	lfg.push_back(fg[4 - 1]);
 | |
| 	lfg.push_back(fg[2 - 1]);
 | |
| 
 | |
| 	// combine in a factor
 | |
| 	GaussianFactor combined(lfg);
 | |
| 
 | |
| 	// sigmas
 | |
| 	double sigma2 = 0.1;
 | |
| 	double sigma4 = 0.2;
 | |
| 	Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2);
 | |
| 
 | |
| 	// the expected combined linear factor
 | |
| 	Matrix Ax2 = Matrix_(4, 2, // x2
 | |
| 			-5., 0.,
 | |
| 			+0., -5.,
 | |
| 			10., 0.,
 | |
| 			+0., 10.);
 | |
| 
 | |
| 	Matrix Al1 = Matrix_(4, 2,	// l1
 | |
| 			5., 0.,
 | |
| 			0., 5.,
 | |
| 			0., 0.,
 | |
| 			0., 0.);
 | |
| 
 | |
| 	Matrix Ax1 = Matrix_(4, 2,	// x1
 | |
| 			0.00, 0., // f4
 | |
| 			0.00, 0., // f4
 | |
| 			-10., 0., // f2
 | |
| 			0.00, -10. // f2
 | |
| 	);
 | |
| 
 | |
| 	// the RHS
 | |
| 	Vector b2(4);
 | |
| 	b2(0) = -1.0;
 | |
| 	b2(1) =  1.5;
 | |
| 	b2(2) =  2.0;
 | |
| 	b2(3) = -1.0;
 | |
| 
 | |
| 	// use general constructor for making arbitrary factors
 | |
| 	vector<pair<Symbol, Matrix> > meas;
 | |
| 	meas.push_back(make_pair("x2", Ax2));
 | |
| 	meas.push_back(make_pair("l1", Al1));
 | |
| 	meas.push_back(make_pair("x1", Ax1));
 | |
| 	GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4)));
 | |
| 	CHECK(assert_equal(expected,combined));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, combine2){
 | |
| 	double sigma1 = 0.0957;
 | |
| 	Matrix A11(2,2);
 | |
| 	A11(0,0) = 1; A11(0,1) =  0;
 | |
| 	A11(1,0) = 0;       A11(1,1) = 1;
 | |
| 	Vector b(2);
 | |
| 	b(0) = 2; b(1) = -1;
 | |
| 	GaussianFactor::shared_ptr f1(new GaussianFactor("x1", A11, b*sigma1, sharedSigma(2,sigma1)));
 | |
| 
 | |
| 	double sigma2 = 0.5;
 | |
| 	A11(0,0) = 1; A11(0,1) =  0;
 | |
| 	A11(1,0) = 0; A11(1,1) = -1;
 | |
| 	b(0) = 4 ; b(1) = -5;
 | |
| 	GaussianFactor::shared_ptr f2(new GaussianFactor("x1", A11, b*sigma2, sharedSigma(2,sigma2)));
 | |
| 
 | |
| 	double sigma3 = 0.25;
 | |
| 	A11(0,0) = 1; A11(0,1) =  0;
 | |
| 	A11(1,0) = 0; A11(1,1) = -1;
 | |
| 	b(0) = 3 ; b(1) = -88;
 | |
| 	GaussianFactor::shared_ptr f3(new GaussianFactor("x1", A11, b*sigma3, sharedSigma(2,sigma3)));
 | |
| 
 | |
| 	// TODO: find a real sigma value for this example
 | |
| 	double sigma4 = 0.1;
 | |
| 	A11(0,0) = 6; A11(0,1) =  0;
 | |
| 	A11(1,0) = 0; A11(1,1) = 7;
 | |
| 	b(0) = 5 ; b(1) = -6;
 | |
| 	GaussianFactor::shared_ptr f4(new GaussianFactor("x1", A11*sigma4, b*sigma4, sharedSigma(2,sigma4)));
 | |
| 
 | |
| 	vector<GaussianFactor::shared_ptr> lfg;
 | |
| 	lfg.push_back(f1);
 | |
| 	lfg.push_back(f2);
 | |
| 	lfg.push_back(f3);
 | |
| 	lfg.push_back(f4);
 | |
| 	GaussianFactor combined(lfg);
 | |
| 
 | |
| 	Vector sigmas = Vector_(8, sigma1, sigma1, sigma2, sigma2, sigma3, sigma3, sigma4, sigma4);
 | |
| 	Matrix A22(8,2);
 | |
| 	A22(0,0) = 1;   A22(0,1) =  0;
 | |
| 	A22(1,0) = 0;   A22(1,1) = 1;
 | |
| 	A22(2,0) = 1;   A22(2,1) =  0;
 | |
| 	A22(3,0) = 0;   A22(3,1) = -1;
 | |
| 	A22(4,0) = 1;   A22(4,1) =  0;
 | |
| 	A22(5,0) = 0;   A22(5,1) = -1;
 | |
| 	A22(6,0) = 0.6; A22(6,1) =  0;
 | |
| 	A22(7,0) = 0;   A22(7,1) =  0.7;
 | |
| 	Vector exb(8);
 | |
| 	exb(0) = 2*sigma1 ; exb(1) = -1*sigma1;  exb(2) = 4*sigma2 ; exb(3) = -5*sigma2;
 | |
| 	exb(4) = 3*sigma3 ; exb(5) = -88*sigma3; exb(6) = 5*sigma4 ; exb(7) = -6*sigma4;
 | |
| 
 | |
| 	vector<pair<Symbol, Matrix> > meas;
 | |
| 	meas.push_back(make_pair("x1", A22));
 | |
| 	GaussianFactor expected(meas, exb, sigmas);
 | |
| 	CHECK(assert_equal(expected,combined));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, linearFactorN){
 | |
| 	Matrix I = eye(2);
 | |
|   vector<GaussianFactor::shared_ptr> f;
 | |
|   SharedDiagonal model = sharedSigma(2,1.0);
 | |
|   f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x1", I, Vector_(2,
 | |
| 			10.0, 5.0), model)));
 | |
| 	f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x1", -10 * I,
 | |
| 			"x2", 10 * I, Vector_(2, 1.0, -2.0), model)));
 | |
| 	f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x2", -10 * I,
 | |
| 			"x3", 10 * I, Vector_(2, 1.5, -1.5), model)));
 | |
| 	f.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x3", -10 * I,
 | |
| 			"x4", 10 * I, Vector_(2, 2.0, -1.0), model)));
 | |
| 
 | |
|   GaussianFactor combinedFactor(f);
 | |
| 
 | |
|   vector<pair<Symbol, Matrix> > combinedMeasurement;
 | |
|   combinedMeasurement.push_back(make_pair("x1", Matrix_(8,2,
 | |
|       1.0,  0.0,
 | |
|       0.0,  1.0,
 | |
|     -10.0,  0.0,
 | |
|       0.0,-10.0,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0)));
 | |
|   combinedMeasurement.push_back(make_pair("x2", Matrix_(8,2,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0,
 | |
|      10.0,  0.0,
 | |
|       0.0, 10.0,
 | |
|     -10.0,  0.0,
 | |
|       0.0,-10.0,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0)));
 | |
|   combinedMeasurement.push_back(make_pair("x3", Matrix_(8,2,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0,
 | |
|       0.0,  0.0,
 | |
|      10.0,  0.0,
 | |
|       0.0, 10.0,
 | |
|     -10.0,  0.0,
 | |
|       0.0,-10.0)));
 | |
|   combinedMeasurement.push_back(make_pair("x4", Matrix_(8,2,
 | |
|       0.0, 0.0,
 | |
|       0.0, 0.0,
 | |
|       0.0, 0.0,
 | |
|       0.0, 0.0,
 | |
|       0.0, 0.0,
 | |
|       0.0, 0.0,
 | |
|      10.0, 0.0,
 | |
|       0.0,10.0)));
 | |
|   Vector b = Vector_(8,
 | |
|       10.0, 5.0, 1.0, -2.0, 1.5, -1.5, 2.0, -1.0);
 | |
| 
 | |
|   Vector sigmas = repeat(8,1.0);
 | |
|   GaussianFactor expected(combinedMeasurement, b, sigmas);
 | |
|   CHECK(assert_equal(expected,combinedFactor));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, error )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the first factor from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[0];
 | |
| 
 | |
| 	// check the error of the first factor with noisy config
 | |
| 	VectorConfig cfg = createZeroDelta();
 | |
| 
 | |
| 	// calculate the error from the factor "f1"
 | |
| 	// note the error is the same as in testNonlinearFactor
 | |
| 	double actual = lf->error(cfg);
 | |
| 	DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, eliminate )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get two factors from it and insert the factors into a vector
 | |
| 	vector<GaussianFactor::shared_ptr> lfg;
 | |
| 	lfg.push_back(fg[4 - 1]);
 | |
| 	lfg.push_back(fg[2 - 1]);
 | |
| 
 | |
| 	// combine in a factor
 | |
| 	GaussianFactor combined(lfg);
 | |
| 
 | |
| 	// eliminate the combined factor
 | |
| 	GaussianConditional::shared_ptr actualCG;
 | |
| 	GaussianFactor::shared_ptr actualLF;
 | |
| 	boost::tie(actualCG,actualLF) = combined.eliminate("x2");
 | |
| 
 | |
| 	// create expected Conditional Gaussian
 | |
| 	Matrix I = eye(2)*sqrt(125.0);
 | |
| 	Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | |
| 	Vector d = I*Vector_(2,0.2,-0.14);
 | |
| 
 | |
| 	// Check the conditional Gaussian
 | |
| 	GaussianConditional
 | |
| 	expectedCG("x2", d, R11, "l1", S12, "x1", S13, repeat(2, 1.0));
 | |
| 
 | |
| 	// the expected linear factor
 | |
| 	I = eye(2)/0.2236;
 | |
| 	Matrix Bl1 = I, Bx1 = -I;
 | |
| 	Vector b1 = I*Vector_(2,0.0,0.2);
 | |
| 
 | |
| 	GaussianFactor expectedLF("l1", Bl1, "x1", Bx1, b1, repeat(2,1.0));
 | |
| 
 | |
| 	// check if the result matches
 | |
| 	CHECK(assert_equal(expectedCG,*actualCG,1e-3));
 | |
| 	CHECK(assert_equal(expectedLF,*actualLF,1e-3));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, eliminate2 )
 | |
| {
 | |
| 	// sigmas
 | |
| 	double sigma1 = 0.2;
 | |
| 	double sigma2 = 0.1;
 | |
| 	Vector sigmas = Vector_(4, sigma1, sigma1, sigma2, sigma2);
 | |
| 
 | |
| 	// the combined linear factor
 | |
| 	Matrix Ax2 = Matrix_(4,2,
 | |
| 			// x2
 | |
| 			-1., 0.,
 | |
| 			+0.,-1.,
 | |
| 			1., 0.,
 | |
| 			+0.,1.
 | |
| 	);
 | |
| 
 | |
| 	Matrix Al1x1 = Matrix_(4,4,
 | |
| 			// l1   x1
 | |
| 			1., 0., 0.00,  0., // f4
 | |
| 			0., 1., 0.00,  0., // f4
 | |
| 			0., 0., -1.,  0., // f2
 | |
| 			0., 0., 0.00,-1.  // f2
 | |
| 	);
 | |
| 
 | |
| 	// the RHS
 | |
| 	Vector b2(4);
 | |
| 	b2(0) = -0.2;
 | |
| 	b2(1) =  0.3;
 | |
| 	b2(2) =  0.2;
 | |
| 	b2(3) = -0.1;
 | |
| 
 | |
| 	vector<pair<Symbol, Matrix> > meas;
 | |
| 	meas.push_back(make_pair("x2", Ax2));
 | |
| 	meas.push_back(make_pair("l11", Al1x1));
 | |
| 	GaussianFactor combined(meas, b2, sigmas);
 | |
| 
 | |
| 	// eliminate the combined factor
 | |
| 	GaussianConditional::shared_ptr actualCG;
 | |
| 	GaussianFactor::shared_ptr actualLF;
 | |
| 	boost::tie(actualCG,actualLF) = combined.eliminate("x2");
 | |
| 
 | |
| 	// create expected Conditional Gaussian
 | |
| 	double oldSigma = 0.0894427; // from when R was made unit
 | |
| 	Matrix R11 = Matrix_(2,2,
 | |
| 			1.00,  0.00,
 | |
| 			0.00,  1.00
 | |
| 	)/oldSigma;
 | |
| 	Matrix S12 = Matrix_(2,4,
 | |
| 			-0.20, 0.00,-0.80, 0.00,
 | |
| 			+0.00,-0.20,+0.00,-0.80
 | |
| 	)/oldSigma;
 | |
| 	Vector d = Vector_(2,0.2,-0.14)/oldSigma;
 | |
| 	GaussianConditional expectedCG("x2",d,R11,"l11",S12,ones(2));
 | |
| 	CHECK(assert_equal(expectedCG,*actualCG,1e-4));
 | |
| 
 | |
| 	// the expected linear factor
 | |
| 	double sigma = 0.2236;
 | |
| 	Matrix Bl1x1 = Matrix_(2,4,
 | |
| 			// l1          x1
 | |
| 			1.00, 0.00, -1.00,  0.00,
 | |
| 			0.00, 1.00, +0.00, -1.00
 | |
| 	)/sigma;
 | |
| 	Vector b1 =Vector_(2,0.0,0.894427);
 | |
| 	GaussianFactor expectedLF("l11", Bl1x1, b1, repeat(2,1.0));
 | |
| 	CHECK(assert_equal(expectedLF,*actualLF,1e-3));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, default_error )
 | |
| {
 | |
| 	GaussianFactor f;
 | |
| 	VectorConfig c;
 | |
| 	double actual = f.error(c);
 | |
| 	CHECK(actual==0.0);
 | |
| }
 | |
| 
 | |
| //* ************************************************************************* */
 | |
| TEST( GaussianFactor, eliminate_empty )
 | |
| {
 | |
| 	// create an empty factor
 | |
| 	GaussianFactor f;
 | |
| 
 | |
| 	// eliminate the empty factor
 | |
| 	GaussianConditional::shared_ptr actualCG;
 | |
| 	GaussianFactor::shared_ptr actualLF;
 | |
| 	boost::tie(actualCG,actualLF) = f.eliminate("x2");
 | |
| 
 | |
| 	// expected Conditional Gaussian is just a parent-less node with P(x)=1
 | |
| 	GaussianConditional expectedCG("x2");
 | |
| 
 | |
| 	// expected remaining factor is still empty :-)
 | |
| 	GaussianFactor expectedLF;
 | |
| 
 | |
| 	// check if the result matches
 | |
| 	CHECK(actualCG->equals(expectedCG));
 | |
| 	CHECK(actualLF->equals(expectedLF));
 | |
| }
 | |
| 
 | |
| //* ************************************************************************* */
 | |
| TEST( GaussianFactor, empty )
 | |
| {
 | |
| 	// create an empty factor
 | |
| 	GaussianFactor f;
 | |
| 	CHECK(f.empty()==true);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, matrix )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
 | |
| 	Vector b2 = Vector_(2, 0.2, -0.1);
 | |
| 	Matrix I = eye(2);
 | |
| 	GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1","x2";
 | |
| 
 | |
| 	// Test whitened version
 | |
| 	Matrix A_act1; Vector b_act1;
 | |
| 	boost::tie(A_act1,b_act1) = lf->matrix(ord, true);
 | |
| 
 | |
| 	Matrix A1 = Matrix_(2,4,
 | |
| 			-10.0,  0.0, 10.0,  0.0,
 | |
| 			000.0,-10.0,  0.0, 10.0 );
 | |
| 	Vector b1 = Vector_(2, 2.0, -1.0);
 | |
| 
 | |
| 	EQUALITY(A_act1,A1);
 | |
| 	EQUALITY(b_act1,b1);
 | |
| 
 | |
| 	// Test unwhitened version
 | |
| 	Matrix A_act2; Vector b_act2;
 | |
| 	boost::tie(A_act2,b_act2) = lf->matrix(ord, false);
 | |
| 
 | |
| 
 | |
| 	Matrix A2 = Matrix_(2,4,
 | |
| 			-1.0,  0.0, 1.0,  0.0,
 | |
| 			000.0,-1.0,  0.0, 1.0 );
 | |
| 	//Vector b2 = Vector_(2, 2.0, -1.0);
 | |
| 
 | |
| 	EQUALITY(A_act2,A2);
 | |
| 	EQUALITY(b_act2,b2);
 | |
| 
 | |
| 	// Ensure that whitening is consistent
 | |
| 	shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | |
| 	model->WhitenSystem(A_act2, b_act2);
 | |
| 	EQUALITY(A_act1, A_act2);
 | |
| 	EQUALITY(b_act1, b_act2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, matrix_aug )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	//GaussianFactor::shared_ptr lf = fg[1];
 | |
| 	Vector b2 = Vector_(2, 0.2, -0.1);
 | |
| 	Matrix I = eye(2);
 | |
| 	GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1","x2";
 | |
| 
 | |
| 	// Test unwhitened version
 | |
| 	Matrix Ab_act1;
 | |
| 	Ab_act1 = lf->matrix_augmented(ord, false);
 | |
| 
 | |
| 	Matrix Ab1 = Matrix_(2,5,
 | |
| 			-1.0,  0.0, 1.0,  0.0,  0.2,
 | |
| 			00.0,- 1.0, 0.0,  1.0, -0.1 );
 | |
| 
 | |
| 	EQUALITY(Ab_act1,Ab1);
 | |
| 
 | |
| 	// Test whitened version
 | |
| 	Matrix Ab_act2;
 | |
| 	Ab_act2 = lf->matrix_augmented(ord, true);
 | |
| 
 | |
| 	Matrix Ab2 = Matrix_(2,5,
 | |
| 		   -10.0,  0.0, 10.0,  0.0,  2.0,
 | |
| 			00.0, -10.0,  0.0, 10.0, -1.0 );
 | |
| 
 | |
| 	EQUALITY(Ab_act2,Ab2);
 | |
| 
 | |
| 	// Ensure that whitening is consistent
 | |
| 	shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | |
| 	model->WhitenInPlace(Ab_act1);
 | |
| 	EQUALITY(Ab_act1, Ab_act2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // small aux. function to print out lists of anything
 | |
| template<class T>
 | |
| void print(const list<T>& i) {
 | |
| 	copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
 | |
| 	cout << endl;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, sparse )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1","x2";
 | |
| 
 | |
| 	list<int> i,j;
 | |
| 	list<double> s;
 | |
| 	boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
 | |
| 
 | |
| 	list<int> i1,j1;
 | |
| 	i1 += 1,2,1,2;
 | |
| 	j1 += 1,2,3,4;
 | |
| 
 | |
| 	list<double> s1;
 | |
| 	s1 += -10,-10,10,10;
 | |
| 
 | |
| 	CHECK(i==i1);
 | |
| 	CHECK(j==j1);
 | |
| 	CHECK(s==s1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, sparse2 )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x2","l1","x1";
 | |
| 
 | |
| 	list<int> i,j;
 | |
| 	list<double> s;
 | |
| 	boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
 | |
| 
 | |
| 	list<int> i1,j1;
 | |
| 	i1 += 1,2,1,2;
 | |
| 	j1 += 5,6,1,2;
 | |
| 
 | |
| 	list<double> s1;
 | |
| 	s1 += -10,-10,10,10;
 | |
| 
 | |
| 	CHECK(i==i1);
 | |
| 	CHECK(j==j1);
 | |
| 	CHECK(s==s1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, size )
 | |
| {
 | |
| 	// create a linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get some factors from the graph
 | |
| 	boost::shared_ptr<GaussianFactor> factor1 = fg[0];
 | |
| 	boost::shared_ptr<GaussianFactor> factor2 = fg[1];
 | |
| 	boost::shared_ptr<GaussianFactor> factor3 = fg[2];
 | |
| 
 | |
| 	CHECK(factor1->size() == 1);
 | |
| 	CHECK(factor2->size() == 2);
 | |
| 	CHECK(factor3->size() == 2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, tally_separator )
 | |
| {
 | |
| 	GaussianFactor f("x1", eye(2), "x2", eye(2), "l1", eye(2), ones(2), sigma0_1);
 | |
| 
 | |
| 	std::set<Symbol> act1, act2, act3;
 | |
| 	f.tally_separator("x1",	act1);
 | |
| 	f.tally_separator("x2",	act2);
 | |
| 	f.tally_separator("l1",	act3);
 | |
| 
 | |
| 	CHECK(act1.size() == 2);
 | |
| 	CHECK(act1.count("x2") == 1);
 | |
| 	CHECK(act1.count("l1") == 1);
 | |
| 
 | |
| 	CHECK(act2.size() == 2);
 | |
| 	CHECK(act2.count("x1") == 1);
 | |
| 	CHECK(act2.count("l1") == 1);
 | |
| 
 | |
| 	CHECK(act3.size() == 2);
 | |
| 	CHECK(act3.count("x1") == 1);
 | |
| 	CHECK(act3.count("x2") == 1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, CONSTRUCTOR_GaussianConditional )
 | |
| {
 | |
| 	Matrix R11 = eye(2);
 | |
| 	Matrix S12 = Matrix_(2,2,
 | |
| 			-0.200001, 0.00,
 | |
| 			+0.00,-0.200001
 | |
| 	);
 | |
| 	Vector d(2); d(0) = 2.23607; d(1) = -1.56525;
 | |
| 	Vector sigmas =repeat(2,0.29907);
 | |
| 	GaussianConditional::shared_ptr CG(new GaussianConditional("x2",d,R11,"l11",S12,sigmas));
 | |
| 
 | |
| 	// Call the constructor we are testing !
 | |
| 	GaussianFactor actualLF(CG);
 | |
| 
 | |
| 	GaussianFactor expectedLF("x2",R11,"l11",S12,d, sigmas);
 | |
| 	CHECK(assert_equal(expectedLF,actualLF,1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST ( GaussianFactor, constraint_eliminate1 )
 | |
| {
 | |
| 	// construct a linear constraint
 | |
| 	Vector v(2); v(0)=1.2; v(1)=3.4;
 | |
| 	string key = "x0";
 | |
| 	GaussianFactor lc(key, eye(2), v, constraintModel);
 | |
| 
 | |
| 	// eliminate it
 | |
| 	GaussianConditional::shared_ptr actualCG;
 | |
| 	GaussianFactor::shared_ptr actualLF;
 | |
| 	boost::tie(actualCG,actualLF) = lc.eliminate("x0");
 | |
| 
 | |
| 	// verify linear factor
 | |
| 	CHECK(actualLF->size() == 0);
 | |
| 
 | |
| 	// verify conditional Gaussian
 | |
| 	Vector sigmas = Vector_(2, 0.0, 0.0);
 | |
| 	GaussianConditional expCG("x0", v, eye(2), sigmas);
 | |
| 	CHECK(assert_equal(expCG, *actualCG));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST ( GaussianFactor, constraint_eliminate2 )
 | |
| {
 | |
| 	// Construct a linear constraint
 | |
| 	// RHS
 | |
| 	Vector b(2); b(0)=3.0; b(1)=4.0;
 | |
| 
 | |
| 	// A1 - invertible
 | |
| 	Matrix A1(2,2);
 | |
| 	A1(0,0) = 1.0 ; A1(0,1) = 2.0;
 | |
| 	A1(1,0) = 2.0 ; A1(1,1) = 1.0;
 | |
| 
 | |
| 	// A2 - not invertible
 | |
| 	Matrix A2(2,2);
 | |
| 	A2(0,0) = 1.0 ; A2(0,1) = 2.0;
 | |
| 	A2(1,0) = 2.0 ; A2(1,1) = 4.0;
 | |
| 
 | |
| 	GaussianFactor lc("x", A1, "y", A2, b, constraintModel);
 | |
| 
 | |
| 	// eliminate x and verify results
 | |
| 	GaussianConditional::shared_ptr actualCG;
 | |
| 	GaussianFactor::shared_ptr actualLF;
 | |
| 	boost::tie(actualCG, actualLF) = lc.eliminate("x");
 | |
| 
 | |
| 	// LF should be null
 | |
| 	GaussianFactor expectedLF;
 | |
| 	CHECK(assert_equal(*actualLF, expectedLF));
 | |
| 
 | |
| 	// verify CG
 | |
| 	Matrix R = Matrix_(2, 2,
 | |
| 			1.0,    2.0,
 | |
| 			0.0,    1.0);
 | |
| 	Matrix S = Matrix_(2,2,
 | |
| 			1.0,    2.0,
 | |
| 			0.0,    0.0);
 | |
| 	Vector d = Vector_(2, 3.0, 0.6666);
 | |
| 	GaussianConditional expectedCG("x", d, R, "y", S, zero(2));
 | |
| 	CHECK(assert_equal(expectedCG, *actualCG, 1e-4));
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| TEST ( GaussianFactor, combine_matrix ) {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 	Dimensions dimensions = fg.dimensions();
 | |
| 
 | |
| 	// get two factors from it and insert the factors into a vector
 | |
| 	vector<GaussianFactor::shared_ptr> lfg;
 | |
| 	lfg.push_back(fg[4 - 1]);
 | |
| 	lfg.push_back(fg[2 - 1]);
 | |
| 
 | |
| 	// combine in a factor
 | |
| 	Matrix Ab; SharedDiagonal noise;
 | |
| 	Ordering order; order += "x2", "l1", "x1";
 | |
| 	boost::tie(Ab, noise) = GaussianFactor::combineFactorsAndCreateMatrix(lfg, order, dimensions);
 | |
| 
 | |
| 	// the expected augmented matrix
 | |
| 	Matrix expAb = Matrix_(4, 7,
 | |
| 			-5.,  0., 5., 0.,  0.,  0.,-1.0,
 | |
| 			+0., -5., 0., 5.,  0.,  0., 1.5,
 | |
| 			10.,  0., 0., 0.,-10.,  0., 2.0,
 | |
| 			+0., 10., 0., 0.,  0.,-10.,-1.0);
 | |
| 
 | |
| 	// expected noise model
 | |
| 	SharedDiagonal expModel = noiseModel::Unit::Create(4);
 | |
| 
 | |
| 	CHECK(assert_equal(expAb, Ab));
 | |
| 	CHECK(assert_equal(*expModel, *noise));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST ( GaussianFactor, exploding_MAST_factor ) {
 | |
| 	// Test derived from a crashing error in MAST
 | |
| 	// Works properly with the newer elimination code
 | |
| 	// This is only a test of execution without crashing
 | |
| 
 | |
| 	Symbol lA2('l', 18295873486192642);
 | |
| 	Matrix A1 = eye(2);
 | |
| 	Vector b1 = zero(2);
 | |
| 	SharedDiagonal model1 = noiseModel::Isotropic::Sigma(2, 1.0/sqrt(2.0));
 | |
| 	GaussianFactor::shared_ptr f1(new GaussianFactor(lA2, A1, b1, model1));
 | |
| 
 | |
| 	Matrix A2 = Matrix_(3,3,
 | |
| 			5.45735,	  1.94835,	 -1.68176,
 | |
| 				  0,	  10.2778,	 0.973046,
 | |
| 				  0,	        0,	   12.253);
 | |
| 	Vector b2 = Vector_(3, 1.29627e-16, 5.14706e-16, 4.19527e-16);
 | |
| 	SharedDiagonal model2 = noiseModel::Diagonal::Sigmas(ones(3));
 | |
| 	GaussianFactor::shared_ptr f2(new GaussianFactor(lA2, A2, b2, model2));
 | |
| 
 | |
| 	GaussianFactorGraph fg;
 | |
| 	fg.push_back(f1);
 | |
| 	fg.push_back(f2);
 | |
| 
 | |
| 	// works when using the newer implementation of eliminate
 | |
| 	GaussianConditional::shared_ptr cg = fg.eliminateOne(lA2, false);
 | |
| 	CHECK(true);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |