216 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file   GaussianBayesNet.cpp
 | 
						|
 * @brief  Chordal Bayes Net, the result of eliminating a factor graph
 | 
						|
 * @author Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdarg.h>
 | 
						|
#include <boost/foreach.hpp>
 | 
						|
#include <boost/tuple/tuple.hpp>
 | 
						|
 | 
						|
#include <gtsam/base/Matrix-inl.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/linear/VectorValues.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
// Explicitly instantiate so we don't have to include everywhere
 | 
						|
#include <gtsam/inference/BayesNet-inl.h>
 | 
						|
template class BayesNet<GaussianConditional>;
 | 
						|
 | 
						|
// trick from some reading group
 | 
						|
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL) 
 | 
						|
#define REVERSE_FOREACH_PAIR( KEY, VAL, COL) BOOST_REVERSE_FOREACH (boost::tie(KEY,VAL),COL)
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
GaussianBayesNet scalarGaussian(varid_t key, double mu, double sigma) {
 | 
						|
	GaussianBayesNet bn;
 | 
						|
	GaussianConditional::shared_ptr
 | 
						|
		conditional(new GaussianConditional(key, Vector_(1,mu)/sigma, eye(1)/sigma, ones(1)));
 | 
						|
	bn.push_back(conditional);
 | 
						|
	return bn;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
GaussianBayesNet simpleGaussian(varid_t key, const Vector& mu, double sigma) {
 | 
						|
	GaussianBayesNet bn;
 | 
						|
	size_t n = mu.size();
 | 
						|
	GaussianConditional::shared_ptr
 | 
						|
		conditional(new GaussianConditional(key, mu/sigma, eye(n)/sigma, ones(n)));
 | 
						|
	bn.push_back(conditional);
 | 
						|
	return bn;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void push_front(GaussianBayesNet& bn, varid_t key, Vector d, Matrix R,
 | 
						|
		varid_t name1, Matrix S, Vector sigmas) {
 | 
						|
	GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, sigmas));
 | 
						|
	bn.push_front(cg);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void push_front(GaussianBayesNet& bn, varid_t key, Vector d, Matrix R,
 | 
						|
		varid_t name1, Matrix S, varid_t name2, Matrix T, Vector sigmas) {
 | 
						|
	GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, name2, T, sigmas));
 | 
						|
	bn.push_front(cg);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
boost::shared_ptr<VectorValues> allocateVectorValues(const GaussianBayesNet& bn) {
 | 
						|
  vector<size_t> dimensions(bn.size());
 | 
						|
  varid_t var = 0;
 | 
						|
  BOOST_FOREACH(const boost::shared_ptr<const GaussianConditional> conditional, bn) {
 | 
						|
    dimensions[var++] = conditional->get_R().size1();
 | 
						|
  }
 | 
						|
  return boost::shared_ptr<VectorValues>(new VectorValues(dimensions));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
VectorValues optimize(const GaussianBayesNet& bn)
 | 
						|
{
 | 
						|
  return *optimize_(bn);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
boost::shared_ptr<VectorValues> optimize_(const GaussianBayesNet& bn)
 | 
						|
{
 | 
						|
	boost::shared_ptr<VectorValues> result(allocateVectorValues(bn));
 | 
						|
 | 
						|
  /** solve each node in turn in topological sort order (parents first)*/
 | 
						|
	BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) {
 | 
						|
    Vector x = cg->solve(*result); // Solve for that variable
 | 
						|
    (*result)[cg->key()] = x;   // store result in partial solution
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
VectorValues backSubstitute(const GaussianBayesNet& bn, const VectorValues& y) {
 | 
						|
	VectorValues x(y);
 | 
						|
	backSubstituteInPlace(bn,x);
 | 
						|
	return x;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
 | 
						|
void backSubstituteInPlace(const GaussianBayesNet& bn, VectorValues& y) {
 | 
						|
	VectorValues& x = y;
 | 
						|
	/** solve each node in turn in topological sort order (parents first)*/
 | 
						|
	BOOST_REVERSE_FOREACH(const boost::shared_ptr<const GaussianConditional> cg, bn) {
 | 
						|
		// i^th part of R*x=y, x=inv(R)*y
 | 
						|
		// (Rii*xi + R_i*x(i+1:))./si = yi <-> xi = inv(Rii)*(yi.*si - R_i*x(i+1:))
 | 
						|
		varid_t i = cg->key();
 | 
						|
		Vector zi = emul(y[i],cg->get_sigmas());
 | 
						|
		GaussianConditional::const_iterator it;
 | 
						|
		for (it = cg->beginParents(); it!= cg->endParents(); it++) {
 | 
						|
			multiplyAdd(-1.0,cg->get_S(it),x[*it],zi);
 | 
						|
		}
 | 
						|
		x[i] = gtsam::backSubstituteUpper(cg->get_R(), zi);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// gy=inv(L)*gx by solving L*gy=gx.
 | 
						|
// gy=inv(R'*inv(Sigma))*gx
 | 
						|
// gz'*R'=gx', gy = gz.*sigmas
 | 
						|
VectorValues backSubstituteTranspose(const GaussianBayesNet& bn,
 | 
						|
		const VectorValues& gx) {
 | 
						|
 | 
						|
	// Initialize gy from gx
 | 
						|
	// TODO: used to insert zeros if gx did not have an entry for a variable in bn
 | 
						|
	VectorValues gy = gx;
 | 
						|
 | 
						|
	// we loop from first-eliminated to last-eliminated
 | 
						|
	// i^th part of L*gy=gx is done block-column by block-column of L
 | 
						|
	BOOST_FOREACH(const boost::shared_ptr<const GaussianConditional> cg, bn) {
 | 
						|
		varid_t j = cg->key();
 | 
						|
		gy[j] = gtsam::backSubstituteUpper(gy[j],cg->get_R());
 | 
						|
		GaussianConditional::const_iterator it;
 | 
						|
		for (it = cg->beginParents(); it!= cg->endParents(); it++) {
 | 
						|
			const varid_t i = *it;
 | 
						|
			transposeMultiplyAdd(-1.0,cg->get_S(it),gy[j],gy[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Scale gy
 | 
						|
	BOOST_FOREACH(GaussianConditional::shared_ptr cg, bn) {
 | 
						|
		varid_t j = cg->key();
 | 
						|
		gy[j] = emul(gy[j],cg->get_sigmas());
 | 
						|
	}
 | 
						|
 | 
						|
	return gy;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */  
 | 
						|
pair<Matrix,Vector> matrix(const GaussianBayesNet& bn)  {
 | 
						|
 | 
						|
  // add the dimensions of all variables to get matrix dimension
 | 
						|
  // and at the same time create a mapping from keys to indices
 | 
						|
  size_t N=0; map<varid_t,size_t> mapping;
 | 
						|
  BOOST_FOREACH(GaussianConditional::shared_ptr cg,bn) {
 | 
						|
    mapping.insert(make_pair(cg->key(),N));
 | 
						|
    N += cg->dim();
 | 
						|
  }
 | 
						|
 | 
						|
  // create matrix and copy in values
 | 
						|
  Matrix R = zeros(N,N);
 | 
						|
  Vector d(N);
 | 
						|
  varid_t key; size_t I;
 | 
						|
  FOREACH_PAIR(key,I,mapping) {
 | 
						|
    // find corresponding conditional
 | 
						|
    boost::shared_ptr<const GaussianConditional> cg = bn[key];
 | 
						|
    
 | 
						|
    // get sigmas
 | 
						|
    Vector sigmas = cg->get_sigmas();
 | 
						|
 | 
						|
    // get RHS and copy to d
 | 
						|
    GaussianConditional::const_d_type d_ = cg->get_d();
 | 
						|
    const size_t n = d_.size();
 | 
						|
    for (size_t i=0;i<n;i++)
 | 
						|
      d(I+i) = d_(i)/sigmas(i);
 | 
						|
 | 
						|
    // get leading R matrix and copy to R
 | 
						|
    GaussianConditional::const_r_type R_ = cg->get_R();
 | 
						|
    for (size_t i=0;i<n;i++)
 | 
						|
      for(size_t j=0;j<n;j++)
 | 
						|
      	R(I+i,I+j) = R_(i,j)/sigmas(i);
 | 
						|
 | 
						|
    // loop over S matrices and copy them into R
 | 
						|
    GaussianConditional::const_iterator keyS = cg->beginParents();
 | 
						|
    for (; keyS!=cg->endParents(); keyS++) {
 | 
						|
      Matrix S = cg->get_S(keyS);                   // get S matrix
 | 
						|
      const size_t m = S.size1(), n = S.size2(); // find S size
 | 
						|
      const size_t J = mapping[*keyS];     // find column index
 | 
						|
      for (size_t i=0;i<m;i++)
 | 
						|
      	for(size_t j=0;j<n;j++)
 | 
						|
      		R(I+i,J+j) = S(i,j)/sigmas(i);
 | 
						|
    } // keyS
 | 
						|
 | 
						|
  } // keyI
 | 
						|
 | 
						|
  return make_pair(R,d);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
VectorValues rhs(const GaussianBayesNet& bn) {
 | 
						|
	boost::shared_ptr<VectorValues> result(allocateVectorValues(bn));
 | 
						|
  BOOST_FOREACH(boost::shared_ptr<const GaussianConditional> cg,bn) {
 | 
						|
  	varid_t key = cg->key();
 | 
						|
  	// get sigmas
 | 
						|
    const Vector& sigmas = cg->get_sigmas();
 | 
						|
 | 
						|
    // get RHS and copy to d
 | 
						|
    GaussianConditional::const_d_type d = cg->get_d();
 | 
						|
    (*result)[key] = ediv_(d,sigmas); // TODO ediv_? I think not
 | 
						|
  }
 | 
						|
 | 
						|
  return *result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
} // namespace gtsam
 |