968 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			968 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file   Matrix.cpp
 | |
|  * @brief  matrix class
 | |
|  * @author Christian Potthast
 | |
|  */
 | |
| 
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <iomanip>
 | |
| #include <list>
 | |
| 
 | |
| #ifdef GSL
 | |
| #include <gsl/gsl_blas.h> // needed for gsl blas
 | |
| #include <gsl/gsl_linalg.h>
 | |
| #endif
 | |
| 
 | |
| #include <boost/numeric/ublas/matrix_proxy.hpp>
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/numeric/ublas/lu.hpp>
 | |
| #include <boost/numeric/ublas/io.hpp>
 | |
| #include <boost/numeric/ublas/triangular.hpp>
 | |
| #include <boost/numeric/ublas/symmetric.hpp>
 | |
| #include <boost/numeric/ublas/matrix_proxy.hpp>
 | |
| #include <boost/numeric/ublas/vector_proxy.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| 
 | |
| #include "Matrix.h"
 | |
| #include "Vector.h"
 | |
| #include "svdcmp.h"
 | |
| 
 | |
| // use for switching quickly between GSL and nonGSL versions without reconfigure
 | |
| //#define REVERTGSL
 | |
| 
 | |
| 
 | |
| using namespace std;
 | |
| namespace ublas = boost::numeric::ublas;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix Matrix_( size_t m, size_t n, const double* const data) {
 | |
|   Matrix A(m,n);
 | |
|   copy(data, data+m*n, A.data().begin());
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix Matrix_( size_t m, size_t n, const Vector& v)
 | |
| {
 | |
|   Matrix A(m,n);
 | |
|   // column-wise copy
 | |
|   for( size_t j = 0, k=0  ; j < n ; j++)
 | |
|     for( size_t i = 0; i < m ; i++,k++)
 | |
|       A(i,j) = v(k);
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix Matrix_(size_t m, size_t n, ...) {
 | |
|   Matrix A(m,n);
 | |
|   va_list ap;
 | |
|   va_start(ap, n);
 | |
|   for( size_t i = 0 ; i < m ; i++)
 | |
|     for( size_t j = 0 ; j < n ; j++) {
 | |
|       double value = va_arg(ap, double);
 | |
|       A(i,j) = value;
 | |
|     }
 | |
|   va_end(ap);
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** create a matrix with value zero                                          */
 | |
| /* ************************************************************************* */
 | |
| Matrix zeros( size_t m, size_t n )
 | |
| {
 | |
|   Matrix A(m,n, 0.0);
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /** 
 | |
|  * Identity matrix
 | |
|  */
 | |
| Matrix eye( size_t m, size_t n){
 | |
|   Matrix A = zeros(m,n);
 | |
|   for(size_t i = 0; i<min(m,n); i++) A(i,i)=1.0;
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */ 
 | |
| /** Diagonal matrix values                                                   */
 | |
| /* ************************************************************************* */
 | |
| Matrix diag(const Vector& v) {
 | |
|   size_t m = v.size();
 | |
|   Matrix A = zeros(m,m);
 | |
|   for(size_t i = 0; i<m; i++) A(i,i)=v(i);
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** Check if two matrices are the same                                       */
 | |
| /* ************************************************************************* */
 | |
| bool equal_with_abs_tol(const Matrix& A, const Matrix& B, double tol) {
 | |
| 
 | |
|   size_t n1 = A.size2(), m1 = A.size1();
 | |
|   size_t n2 = B.size2(), m2 = B.size1();
 | |
| 
 | |
|   if(m1!=m2 || n1!=n2) return false;
 | |
| 
 | |
|   for(size_t i=0; i<m1; i++)
 | |
| 	  for(size_t j=0; j<n1; j++) {
 | |
| 		  if(isnan(A(i,j)) xor isnan(B(i,j)))
 | |
| 			  return false;
 | |
| 		  if(fabs(A(i,j) - B(i,j)) > tol)
 | |
| 			  return false;
 | |
| 	  }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool assert_equal(const Matrix& expected, const Matrix& actual, double tol) {
 | |
| 
 | |
|   if (equal_with_abs_tol(expected,actual,tol)) return true;
 | |
| 
 | |
|   size_t n1 = expected.size2(), m1 = expected.size1();
 | |
|   size_t n2 = actual.size2(), m2 = actual.size1();
 | |
| 
 | |
|   cout << "not equal:" << endl;
 | |
|   print(expected,"expected = ");
 | |
|   print(actual,"actual = ");
 | |
|   if(m1!=m2 || n1!=n2)
 | |
|     cout << m1 << "," << n1 << " != " << m2 << "," << n2 << endl;
 | |
|   else
 | |
|     print(actual-expected, "actual - expected = ");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void multiplyAdd(double alpha, const Matrix& A, const Vector& x, Vector& e) {
 | |
| #ifdef GSL
 | |
| 	gsl_vector_const_view xg = gsl_vector_const_view_array(x.data().begin(), x.size());
 | |
| 	gsl_vector_view eg = gsl_vector_view_array(e.data().begin(), e.size());
 | |
| 	gsl_matrix_const_view Ag = gsl_matrix_const_view_array(A.data().begin(), A.size1(), A.size2());
 | |
| 	gsl_blas_dgemv (CblasNoTrans, alpha, &(Ag.matrix), &(xg.vector), 1.0, &(eg.vector));
 | |
| #else
 | |
| 	// ublas e += prod(A,x) is terribly slow
 | |
|   size_t m = A.size1(), n = A.size2();
 | |
| 	double * ei = e.data().begin();
 | |
| 	const double * aij = A.data().begin();
 | |
| 	for (int i = 0; i < m; i++, ei++) {
 | |
| 		const double * xj = x.data().begin();
 | |
| 		for (int j = 0; j < n; j++, aij++, xj++)
 | |
| 			(*ei) += alpha * (*aij) * (*xj);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector operator^(const Matrix& A, const Vector & v) {
 | |
|   if (A.size1()!=v.size()) throw std::invalid_argument(
 | |
|   		boost::str(boost::format("Matrix operator^ : A.m(%d)!=v.size(%d)") % A.size1() % v.size()));
 | |
|   Vector vt = trans(v);
 | |
|   Vector vtA = prod(vt,A);
 | |
|   return trans(vtA);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void transposeMultiplyAdd(double alpha, const Matrix& A, const Vector& e, Vector& x) {
 | |
| #ifdef GSL
 | |
| 	gsl_vector_const_view eg = gsl_vector_const_view_array(e.data().begin(), e.size());
 | |
| 	gsl_vector_view xg = gsl_vector_view_array(x.data().begin(), x.size());
 | |
| 	gsl_matrix_const_view Ag = gsl_matrix_const_view_array(A.data().begin(), A.size1(), A.size2());
 | |
| 	gsl_blas_dgemv (CblasTrans, alpha, &(Ag.matrix), &(eg.vector), 1.0, &(xg.vector));
 | |
| #else
 | |
| 	// ublas x += prod(trans(A),e) is terribly slow
 | |
| 	// TODO: use BLAS
 | |
|   size_t m = A.size1(), n = A.size2();
 | |
| 	double * xj = x.data().begin();
 | |
| 	for (int j = 0; j < n; j++,xj++) {
 | |
| 		const double * ei = e.data().begin();
 | |
| 		const double * aij = A.data().begin() + j;
 | |
| 		for (int i = 0; i < m; i++, aij+=n, ei++)
 | |
| 			(*xj) += alpha * (*aij) * (*ei);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void transposeMultiplyAdd(double alpha, const Matrix& A, const Vector& e, SubVector x) {
 | |
| 	// ublas x += prod(trans(A),e) is terribly slow
 | |
| 	// TODO: use BLAS
 | |
|   size_t m = A.size1(), n = A.size2();
 | |
| 	for (int j = 0; j < n; j++) {
 | |
| 		const double * ei = e.data().begin();
 | |
| 		const double * aij = A.data().begin() + j;
 | |
| 		for (int i = 0; i < m; i++, aij+=n, ei++)
 | |
| 			x(j) += alpha * (*aij) * (*ei);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector Vector_(const Matrix& A)
 | |
| {
 | |
|   size_t m = A.size1(), n = A.size2();
 | |
|   Vector v(m*n);
 | |
|   for( size_t j = 0, k=0  ; j < n ; j++)
 | |
|     for( size_t i = 0; i < m ; i++,k++)
 | |
|       v(k) = A(i,j);
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector column_(const Matrix& A, size_t j) {
 | |
| //	if (j>=A.size2())
 | |
| //		throw invalid_argument("Column index out of bounds!");
 | |
| 
 | |
| 	return column(A,j); // real boost version
 | |
| 
 | |
| 	// TODO: improve this
 | |
| //	size_t m = A.size1();
 | |
| //	Vector a(m);
 | |
| //	for (size_t i=0; i<m; ++i)
 | |
| //		a(i) = A(i,j);
 | |
| //	return a;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector row_(const Matrix& A, size_t i) {
 | |
| 	if (i>=A.size1())
 | |
| 		throw invalid_argument("Row index out of bounds!");
 | |
| 
 | |
| 	const double * Aptr = A.data().begin() + A.size2() * i;
 | |
| 	return Vector_(A.size2(), Aptr);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void print(const Matrix& A, const string &s) {
 | |
|   size_t m = A.size1(), n = A.size2();
 | |
| 
 | |
|   // print out all elements
 | |
|   cout << s << "[\n";
 | |
|   for( size_t i = 0 ; i < m ; i++) {
 | |
|     for( size_t j = 0 ; j < n ; j++) {
 | |
|       double aij = A(i,j);
 | |
|       cout << setw(9) << (fabs(aij)<1e-12 ? 0 : aij) << "\t";
 | |
|     }
 | |
|     cout << endl;
 | |
|   }
 | |
|   cout << "]" << endl;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix sub(const Matrix& A, size_t i1, size_t i2, size_t j1, size_t j2) {
 | |
|   // using ublas is slower:
 | |
|   // Matrix B = Matrix(ublas::project(A,ublas::range(i1,i2+1),ublas::range(j1,j2+1)));
 | |
|   size_t m=i2-i1, n=j2-j1;
 | |
|   Matrix B(m,n);
 | |
|   for (size_t i=i1,k=0;i<i2;i++,k++)
 | |
|     memcpy(&B(k,0),&A(i,j1),n*sizeof(double));
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void insertSub(Matrix& big, const Matrix& small, size_t i, size_t j) {
 | |
| 	// direct pointer method
 | |
| 	size_t ib = big.size1(), jb = big.size2(),
 | |
| 		   is = small.size1(), js = small.size2();
 | |
| 
 | |
| 	// pointer to start of window in big
 | |
| 	double * bigptr = big.data().begin() + i*jb + j;
 | |
| 	const double * smallptr = small.data().begin();
 | |
| 	for (size_t row=0; row<is; ++row)
 | |
| 		memcpy(bigptr+row*jb, smallptr+row*js, js*sizeof(double));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void insertColumn(Matrix& A, const Vector& col, size_t j) {
 | |
| 	ublas::matrix_column<Matrix> colproxy(A, j);
 | |
| 	colproxy = col;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void insertColumn(Matrix& A, const Vector& col, size_t i, size_t j) {
 | |
| 	ublas::matrix_column<Matrix> colproxy(A, j);
 | |
| 	ublas::vector_range<ublas::matrix_column<Matrix> > colsubproxy(colproxy,
 | |
| 			ublas::range (i, i+col.size()));
 | |
| 	colsubproxy = col;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void solve(Matrix& A, Matrix& B)
 | |
| {
 | |
| 	typedef ublas::permutation_matrix<std::size_t> pmatrix;
 | |
| 	// create a working copy of the input
 | |
| 	Matrix A_(A);
 | |
| 	// create a permutation matrix for the LU-factorization
 | |
| 	pmatrix pm(A_.size1());
 | |
| 
 | |
| 	// perform LU-factorization
 | |
| 	int res = lu_factorize(A_,pm);
 | |
| 	if( res != 0 ) throw runtime_error ("Matrix::solve: lu_factorize failed!");
 | |
| 
 | |
| 	// backsubstitute to get the inverse
 | |
| 	lu_substitute(A_, pm, B);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix inverse(const Matrix& originalA)
 | |
| {
 | |
|   Matrix A(originalA);
 | |
|   Matrix B = eye(A.size2());
 | |
|   solve(A,B);
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** Householder QR factorization, Golub & Van Loan p 224, explicit version    */
 | |
| /* ************************************************************************* */
 | |
| pair<Matrix,Matrix> qr(const Matrix& A) {
 | |
| 
 | |
|   const size_t m = A.size1(), n = A.size2(), kprime = min(m,n);
 | |
|   
 | |
|   Matrix Q=eye(m,m),R(A);
 | |
|   Vector v(m);
 | |
| 
 | |
|   // loop over the kprime first columns 
 | |
|   for(size_t j=0; j < kprime; j++){
 | |
| 
 | |
|     // we now work on the matrix (m-j)*(n-j) matrix A(j:end,j:end)
 | |
|     const size_t mm=m-j;
 | |
| 
 | |
|     // copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
 | |
|     Vector xjm(mm);
 | |
|     for(size_t k = 0 ; k < mm; k++)
 | |
|       xjm(k) = R(j+k, j);  
 | |
|         
 | |
|     // calculate the Householder vector v
 | |
|     double beta; Vector vjm;
 | |
|     boost::tie(beta,vjm) = house(xjm);
 | |
| 
 | |
|     // pad with zeros to get m-dimensional vector v
 | |
|     for(size_t k = 0 ; k < m; k++) 
 | |
|       v(k) = k<j ? 0.0 : vjm(k-j);
 | |
| 
 | |
|     // create Householder reflection matrix Qj = I-beta*v*v'
 | |
|     Matrix Qj = eye(m) - beta * Matrix(outer_prod(v,v)); //BAD: Fix this
 | |
| 
 | |
|     R = Qj * R; // update R
 | |
|     Q = Q * Qj; // update Q
 | |
| 
 | |
|   } // column j
 | |
| 
 | |
|   return make_pair(Q,R);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** Imperative version of Householder rank 1 update
 | |
|  * i.e. do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w'
 | |
|  * but only in relevant part, from row j onwards
 | |
|  * If called from householder_ does actually more work as first j columns 
 | |
|  * will not be touched. However, is called from GaussianFactor.eliminate
 | |
|  * on a number of different matrices for which all columns change.
 | |
|  */
 | |
| /* ************************************************************************* */
 | |
| inline void householder_update_manual(Matrix &A, int j, double beta, const Vector& vjm) {
 | |
| 	const size_t m = A.size1(), n = A.size2();
 | |
| 	// w = beta*transpose(A(j:m,:))*v(j:m)
 | |
| 	Vector w(n);
 | |
| 	for( size_t c = 0; c < n; c++) {
 | |
| 		w(c) = 0.0;
 | |
| 		// dangerous as relies on row-major scheme
 | |
| 		const double *a = &A(j,c), * const v = &vjm(0);
 | |
| 		for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n )
 | |
| 			// w(c) += A(r,c) * vjm(r-j)
 | |
| 			w(c) += (*a) * v[s];
 | |
| 		w(c) *= beta;
 | |
| 	}
 | |
| 
 | |
| 	// rank 1 update A(j:m,:) -= v(j:m)*w'
 | |
| 	for( size_t c = 0 ; c < n; c++) {
 | |
| 		double wc = w(c);
 | |
| 		double *a = &A(j,c); const double * const v =&vjm(0);
 | |
| 		for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n )
 | |
| 			// A(r,c) -= vjm(r-j) * wjn(c-j);
 | |
| 			(*a) -= v[s] * wc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void householder_update(Matrix &A, int j, double beta, const Vector& vjm) {
 | |
| 	// TODO: SWAP IN ATLAS VERSION OF THE SYSTEM
 | |
| //	// straight atlas version
 | |
| //	const size_t m = A.size1(), n = A.size2(), mj = m-j;
 | |
| //
 | |
| //	// find pointers to the data
 | |
| //	const double * vptr = vjm.data().begin(); // mj long
 | |
| //	double * Aptr = A.data().begin() + n*j; // mj x n - note that this starts at row j
 | |
| //
 | |
| //	// first step: get w = beta*trans(A(j:m,:))*vjm
 | |
| //	Vector w(n);
 | |
| //	double * wptr = w.data().begin();
 | |
| //
 | |
| //	// execute w generation
 | |
| //	cblas_dgemv(CblasRowMajor, CblasTrans, mj, n, beta, Aptr, n, vptr, 1, 0.0, wptr, 1);
 | |
| //
 | |
| //	// second step: rank 1 update A(j:m,:) = v(j:m)*w' + A(j:m,:)
 | |
| //	cblas_dger(CblasRowMajor, mj, n, 1.0, vptr, 1, wptr, 1, Aptr, n);
 | |
| 
 | |
| 
 | |
| #ifdef GSL
 | |
| #ifndef REVERTGSL
 | |
| 	const size_t m = A.size1(), n = A.size2();
 | |
| 	// use GSL version
 | |
| 	gsl_vector_const_view v = gsl_vector_const_view_array(vjm.data().begin(), m-j);
 | |
| 	gsl_matrix_view Ag = gsl_matrix_view_array(A.data().begin(), m, n);
 | |
| 	gsl_matrix_view Ag_view = gsl_matrix_submatrix (&(Ag.matrix), j, 0, m-j, n);
 | |
| 	gsl_linalg_householder_hm (beta, &(v.vector), &(Ag_view.matrix));
 | |
| #else
 | |
| 	householder_update_manual(A,j,beta,vjm);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 	householder_update_manual(A,j,beta,vjm);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // update A, b
 | |
| // A' \define A_{S}-ar and b'\define b-ad
 | |
| // __attribute__ ((noinline))	// uncomment to prevent inlining when profiling
 | |
| inline void updateAb_manual(Matrix& A, Vector& b, int j, const Vector& a,
 | |
| 		const Vector& r, double d) {
 | |
| 	const size_t m = A.size1(), n = A.size2();
 | |
| 	for (size_t i = 0; i < m; i++) { // update all rows
 | |
| 		double ai = a(i);
 | |
| 		b(i) -= ai * d;
 | |
| 		double *Aij = A.data().begin() + i * n + j + 1;
 | |
| 		const double *rptr = r.data().begin() + j + 1;
 | |
| 		// A(i,j+1:end) -= ai*r(j+1:end)
 | |
| 		for (size_t j2 = j + 1; j2 < n; j2++, Aij++, rptr++)
 | |
| 			*Aij -= ai * (*rptr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void updateAb(Matrix& A, Vector& b, int j, const Vector& a,
 | |
| 		const Vector& r, double d) {
 | |
| #ifdef GSL
 | |
| #ifndef REVERTGSL
 | |
| 	const size_t m = A.size1(), n = A.size2();
 | |
| 	// update A
 | |
| 	// A(0:m,j+1:end) = A(0:m,j+1:end) - a(0:m)*r(j+1:end)'
 | |
| 	// get a view for A
 | |
| 	gsl_matrix_view Ag = gsl_matrix_view_array(A.data().begin(), m, n);
 | |
| 	gsl_matrix_view Ag_view = gsl_matrix_submatrix (&(Ag.matrix), 0, j+1, m, n-j-1);
 | |
| 	// get a view for r
 | |
| 	gsl_vector_const_view rg = gsl_vector_const_view_array(r.data().begin()+j+1, n-j-1);
 | |
| 	// get a view for a
 | |
| 	gsl_vector_const_view ag = gsl_vector_const_view_array(a.data().begin(), m);
 | |
| 
 | |
| 	// rank one update
 | |
| 	gsl_blas_dger (-1.0, &(ag.vector), &(rg.vector), &(Ag_view.matrix));
 | |
| 
 | |
| 	// update b
 | |
| 	double * bptr = b.data().begin();
 | |
| 	const double * aptr = a.data().begin();
 | |
| 	for (size_t i = 0; i < m; i++) {
 | |
| 		*(bptr+i) -= d* *(aptr+i);
 | |
| 	}
 | |
| 
 | |
| #else
 | |
| 	updateAb_manual(A,b,j,a,r,d);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 	updateAb_manual(A,b,j,a,r,d);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| list<boost::tuple<Vector, double, double> >
 | |
| weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
 | |
| 	size_t m = A.size1(), n = A.size2(); // get size(A)
 | |
| 	size_t maxRank = min(m,n);
 | |
| 
 | |
| 	// create list
 | |
| 	list<boost::tuple<Vector, double, double> > results;
 | |
| 
 | |
| 	Vector pseudo(m); // allocate storage for pseudo-inverse
 | |
| 	Vector weights = reciprocal(emul(sigmas,sigmas)); // calculate weights once
 | |
| 
 | |
| 	// We loop over all columns, because the columns that can be eliminated
 | |
| 	// are not necessarily contiguous. For each one, estimate the corresponding
 | |
| 	// scalar variable x as d-rS, with S the separator (remaining columns).
 | |
| 	// Then update A and b by substituting x with d-rS, zero-ing out x's column.
 | |
| 	for (size_t j=0; j<n; ++j) {
 | |
| 		// extract the first column of A
 | |
| 		Vector a(column_(A, j)); // ublas::matrix_column is slower !
 | |
| 		//print(a,"a");
 | |
| 
 | |
| 		// Calculate weighted pseudo-inverse and corresponding precision
 | |
| 		double precision = weightedPseudoinverse(a, weights, pseudo);
 | |
| //		cout << precision << endl;
 | |
| //		print(pseudo,"pseudo");
 | |
| 
 | |
| 		// if precision is zero, no information on this column
 | |
| 		if (precision < 1e-8) continue;
 | |
| 
 | |
| 		// create solution and copy into r
 | |
| 		Vector r(basis(n, j));
 | |
| 		for (size_t j2=j+1; j2<n; ++j2)
 | |
| 			r(j2) = inner_prod(pseudo, ublas::matrix_column<Matrix>(A, j2)); // TODO: don't use ublas
 | |
| 
 | |
| 		// create the rhs
 | |
| 		double d = inner_prod(pseudo, b);
 | |
| 
 | |
| 		// construct solution (r, d, sigma)
 | |
| 		// TODO: avoid sqrt, store precision or at least variance
 | |
| 		results.push_back(boost::make_tuple(r, d, 1./sqrt(precision)));
 | |
| 
 | |
| 		// exit after rank exhausted
 | |
| 		if (results.size()>=maxRank) break;
 | |
| 
 | |
| 		// update A, b, expensive, using outer product
 | |
| 		// A' \define A_{S}-a*r and b'\define b-d*a
 | |
| 		updateAb(A, b, j, a, r, d);
 | |
| 	}
 | |
| 
 | |
| 	return results;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** Imperative version of Householder QR factorization, Golub & Van Loan p 224
 | |
|  * version with Householder vectors below diagonal, as in GVL
 | |
|  */
 | |
| /* ************************************************************************* */
 | |
| inline void householder_manual(Matrix &A, size_t k) {
 | |
| 	const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n));
 | |
| 	// loop over the kprime first columns
 | |
| 	for(size_t j=0; j < kprime; j++){
 | |
| 		// below, the indices r,c always refer to original A
 | |
| 
 | |
| 		// copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
 | |
| 		Vector xjm(m-j);
 | |
| 		for(size_t r = j ; r < m; r++)
 | |
| 			xjm(r-j) = A(r,j);
 | |
| 
 | |
| 		// calculate the Householder vector
 | |
| 		double beta; Vector vjm;
 | |
| 		boost::tie(beta,vjm) = house(xjm);
 | |
| 
 | |
| 		// do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w'
 | |
| 		householder_update(A, j, beta, vjm);
 | |
| 
 | |
| 		// the Householder vector is copied in the zeroed out part
 | |
| 		for( size_t r = j+1 ; r < m ; r++ )
 | |
| 			A(r,j) = vjm(r-j);
 | |
| 
 | |
| 	} // column j
 | |
| }
 | |
| 
 | |
| void householder_(Matrix &A, size_t k) 
 | |
| {
 | |
| #ifdef GSL
 | |
| #ifndef REVERTGSL
 | |
| 	const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n));
 | |
| 	// loop over the kprime first columns
 | |
| 	for(size_t j=0; j < kprime; j++){
 | |
| 		// below, the indices r,c always refer to original A
 | |
| 
 | |
| 		// copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
 | |
| 		Vector xjm(m-j);
 | |
| 		for(size_t r = j ; r < m; r++)
 | |
| 			xjm(r-j) = A(r,j);
 | |
| 
 | |
| 		// calculate the Householder vector
 | |
| 		// COPIED IN: boost::tie(beta,vjm) = house(xjm);
 | |
| 		const double x0 = xjm(0);
 | |
| 		const double x02 = x0*x0;
 | |
| 
 | |
| 		const double sigma = inner_prod(trans(xjm),xjm) - x02;
 | |
| 		double beta = 0.0; Vector vjm(xjm);  vjm(0) = 1.0;
 | |
| 
 | |
| 		if( sigma == 0.0 )
 | |
| 			beta = 0.0;
 | |
| 		else {
 | |
| 			double mu = sqrt(x02 + sigma);
 | |
| 			if( x0 <= 0.0 )
 | |
| 				vjm(0) = x0 - mu;
 | |
| 			else
 | |
| 				vjm(0) = -sigma / (x0 + mu);
 | |
| 
 | |
| 			const double v02 = vjm(0)*vjm(0);
 | |
| 			beta = 2.0 * v02 / (sigma + v02);
 | |
| 			vjm = vjm / vjm(0);
 | |
| 		}
 | |
| 
 | |
| 		// do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w'
 | |
| 		//householder_update(A, j, beta, vjm);
 | |
| 
 | |
| 		// inlined use GSL version
 | |
| 		gsl_vector_const_view v = gsl_vector_const_view_array(vjm.data().begin(), m-j);
 | |
| 		gsl_matrix_view Ag = gsl_matrix_view_array(A.data().begin(), m, n);
 | |
| 		gsl_matrix_view Ag_view = gsl_matrix_submatrix (&(Ag.matrix), j, 0, m-j, n);
 | |
| 		gsl_linalg_householder_hm (beta, &(v.vector), &(Ag_view.matrix));
 | |
| 
 | |
| 		// the Householder vector is copied in the zeroed out part
 | |
| 		for( size_t r = j+1 ; r < m ; r++ )
 | |
| 			A(r,j) = vjm(r-j);
 | |
| 
 | |
| 	} // column j
 | |
| 
 | |
| #else
 | |
| 	householder_manual(A, k);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 	householder_manual(A, k);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** version with zeros below diagonal                                        */
 | |
| /* ************************************************************************* */
 | |
| void householder(Matrix &A, size_t k) {
 | |
|   householder_(A,k);
 | |
|   const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n));
 | |
|   for(size_t j=0; j < kprime; j++)
 | |
|     for( size_t i = j+1 ; i < m ; i++ )
 | |
|       A(i,j) = 0.0;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector backSubstituteUpper(const Matrix& U, const Vector& b, bool unit) {
 | |
| 	size_t m = U.size1(), n = U.size2();
 | |
| #ifndef NDEBUG
 | |
| 	if (m!=n)
 | |
| 		throw invalid_argument("backSubstituteUpper: U must be square");
 | |
| #endif
 | |
| 
 | |
| 	Vector result(n);
 | |
| 	for (size_t i = n; i > 0; i--) {
 | |
| 		double zi = b(i-1);
 | |
| 		for (size_t j = i+1; j <= n; j++)
 | |
| 			zi -= U(i-1,j-1) * result(j-1);
 | |
| 		if (!unit) zi /= U(i-1,i-1);
 | |
| 		result(i-1) = zi;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector backSubstituteUpper(const Vector& b, const Matrix& U, bool unit) {
 | |
| 	size_t m = U.size1(), n = U.size2();
 | |
| #ifndef NDEBUG
 | |
| 	if (m!=n)
 | |
| 		throw invalid_argument("backSubstituteUpper: U must be square");
 | |
| #endif
 | |
| 
 | |
| 	Vector result(n);
 | |
| 	for (size_t i = 1; i <= n; i++) {
 | |
| 		double zi = b(i-1);
 | |
| 		for (size_t j = 1; j < i; j++)
 | |
| 			zi -= U(j-1,i-1) * result(j-1);
 | |
| 		if (!unit) zi /= U(i-1,i-1);
 | |
| 		result(i-1) = zi;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector backSubstituteLower(const Matrix& L, const Vector& b, bool unit) {
 | |
| 	size_t m = L.size1(), n = L.size2();
 | |
| #ifndef NDEBUG
 | |
| 	if (m!=n)
 | |
| 		throw invalid_argument("backSubstituteLower: L must be square");
 | |
| #endif
 | |
| 
 | |
| 	Vector result(n);
 | |
| 	for (size_t i = 1; i <= n; i++) {
 | |
| 		double zi = b(i-1);
 | |
| 		for (size_t j = 1; j < i; j++)
 | |
| 			zi -= L(i-1,j-1) * result(j-1);
 | |
| 		if (!unit) zi /= L(i-1,i-1);
 | |
| 		result(i-1) = zi;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix stack(size_t nrMatrices, ...)
 | |
| {
 | |
|   size_t dimA1 = 0;
 | |
|   size_t dimA2 = 0;
 | |
|   va_list ap;
 | |
|   va_start(ap, nrMatrices);
 | |
|   for(size_t i = 0 ; i < nrMatrices ; i++) {
 | |
|     Matrix *M = va_arg(ap, Matrix *);
 | |
|     dimA1 += M->size1();
 | |
|     dimA2 =  M->size2();  // TODO: should check if all the same !
 | |
|   }
 | |
|   va_end(ap);
 | |
|   va_start(ap, nrMatrices);
 | |
|   Matrix A(dimA1, dimA2);
 | |
|   size_t vindex = 0;
 | |
|   for( size_t i = 0 ; i < nrMatrices ; i++) {
 | |
|     Matrix *M = va_arg(ap, Matrix *);
 | |
|     for(size_t d1 = 0; d1 < M->size1(); d1++)
 | |
|       for(size_t d2 = 0; d2 < M->size2(); d2++)
 | |
| 	A(vindex+d1, d2) = (*M)(d1, d2);
 | |
|     vindex += M->size1();
 | |
|   }  
 | |
| 
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix collect(const std::vector<const Matrix *>& matrices, size_t m, size_t n)
 | |
| {
 | |
| 	// if we have known and constant dimensions, use them
 | |
| 	size_t dimA1 = m;
 | |
| 	size_t dimA2 = n*matrices.size();
 | |
| 	if (!m && !n)
 | |
| 		BOOST_FOREACH(const Matrix* M, matrices) {
 | |
| 		dimA1 =  M->size1();  // TODO: should check if all the same !
 | |
| 		dimA2 += M->size2();
 | |
| 	}
 | |
| 
 | |
| 	// memcpy version
 | |
| 	Matrix A(dimA1, dimA2);
 | |
| 	double * Aptr = A.data().begin();
 | |
| 	size_t hindex = 0;
 | |
| 	BOOST_FOREACH(const Matrix* M, matrices) {
 | |
| 		size_t row_len = M->size2();
 | |
| 
 | |
| 		// find the size of the row to copy
 | |
| 		size_t row_size = sizeof(double) * row_len;
 | |
| 
 | |
| 		// loop over rows
 | |
| 		for(size_t d1 = 0; d1 < M->size1(); ++d1) { // rows
 | |
| 			// get a pointer to the start of the row in each matrix
 | |
| 			double * Arow = Aptr + d1*dimA2 + hindex;
 | |
| 			double * Mrow = const_cast<double*> (M->data().begin() + d1*row_len);
 | |
| 
 | |
| 			// do direct memory copy to move the row over
 | |
| 			memcpy(Arow, Mrow, row_size);
 | |
| 		}
 | |
| 		hindex += row_len;
 | |
| 	}
 | |
| 
 | |
| 	return A;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix collect(size_t nrMatrices, ...)
 | |
| {
 | |
|   vector<const Matrix *> matrices;
 | |
|   va_list ap;
 | |
|   va_start(ap, nrMatrices);
 | |
|   for( size_t i = 0 ; i < nrMatrices ; i++) {
 | |
|     Matrix *M = va_arg(ap, Matrix *);
 | |
|     matrices.push_back(M);
 | |
|   }
 | |
| return collect(matrices);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // row scaling
 | |
| Matrix vector_scale(const Vector& v, const Matrix& A) {
 | |
| 	Matrix M(A);
 | |
| 	size_t m = A.size1(); size_t n = A.size2();
 | |
| 	for (size_t i=0; i<m; ++i) { // loop over rows
 | |
| 		double vi = v(i);
 | |
| 		//double vi = *(v.data().begin()+i); // not really an improvement
 | |
| 		for (size_t j=0; j<n; ++j) { // loop over columns
 | |
| 			double * Mptr = M.data().begin() + i*n + j;
 | |
| 			(*Mptr) = (*Mptr) * vi;
 | |
| 		}
 | |
| 	}
 | |
| 	return M;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // column scaling
 | |
| Matrix vector_scale(const Matrix& A, const Vector& v) {
 | |
| 	Matrix M(A);
 | |
| 	size_t m = A.size1(); size_t n = A.size2();
 | |
| 	const double * vptr = v.data().begin();
 | |
| 	for (size_t i=0; i<m; ++i) { // loop over rows
 | |
| 		for (size_t j=0; j<n; ++j) { // loop over columns
 | |
| 			double * Mptr = M.data().begin() + i*n + j;
 | |
| 			(*Mptr) = (*Mptr) * *(vptr+j);
 | |
| 		}
 | |
| 	}
 | |
| 	return M;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix skewSymmetric(double wx, double wy, double wz)
 | |
| {
 | |
|   return Matrix_(3,3,
 | |
| 		  0.0, -wz, +wy,
 | |
| 		  +wz, 0.0, -wx,
 | |
| 		  -wy, +wx, 0.0);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** Numerical Recipes in C wrappers                                          
 | |
|  *  create Numerical Recipes in C structure
 | |
|  * pointers are subtracted by one to provide base 1 access 
 | |
|  */
 | |
| /* ************************************************************************* */
 | |
| double** createNRC(Matrix& A) {
 | |
|   const size_t m=A.size1();
 | |
|   double** a = new double* [m];
 | |
|   for(size_t i = 0; i < m; i++) 
 | |
|     a[i] = &A(i,0)-1;
 | |
|   return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ******************************************
 | |
|  * 
 | |
|  * Modified from Justin's codebase
 | |
|  *
 | |
|  *  Idea came from other public domain code.  Takes a S.P.D. matrix
 | |
|  *  and computes the LL^t decomposition.  returns L, which is lower
 | |
|  *  triangular.  Note this is the opposite convention from Matlab,
 | |
|  *  which calculates Q'Q where Q is upper triangular.
 | |
|  *
 | |
|  * ******************************************/
 | |
| 
 | |
| namespace BNU = boost::numeric::ublas;
 | |
| 
 | |
| 
 | |
| Matrix LLt(const Matrix& A)
 | |
| {
 | |
| 	assert(A.size1() == A.size2());
 | |
|         Matrix L = zeros(A.size1(), A.size1());
 | |
| 
 | |
|         for (size_t i = 0 ; i < A.size1(); i++) {
 | |
|                 double p = A(i,i) - BNU::inner_prod( BNU::project( BNU::row(L, i), BNU::range(0, i) ),
 | |
| 						     BNU::project( BNU::row(L, i), BNU::range(0, i) ) );
 | |
|                 assert(p > 0); // Rank failure
 | |
|                 double l_i_i = sqrt(p);
 | |
|                 L(i,i) = l_i_i;
 | |
|                 
 | |
| 		BNU::matrix_column<Matrix> l_i(L, i);
 | |
|                 project( l_i, BNU::range(i+1, A.size1()) )
 | |
|                         = ( BNU::project( BNU::column(A, i), BNU::range(i+1, A.size1()) )
 | |
|                             - BNU::prod( BNU::project(L, BNU::range(i+1, A.size1()), BNU::range(0, i)), 
 | |
| 					 BNU::project(BNU::row(L, i), BNU::range(0, i) ) ) ) / l_i_i;
 | |
|         }
 | |
|         return L;
 | |
| }
 | |
| 
 | |
| Matrix RtR(const Matrix &A)
 | |
| {
 | |
| 	return trans(LLt(A));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is not ultra efficient, but not terrible, either.
 | |
|  */
 | |
| Matrix cholesky_inverse(const Matrix &A)
 | |
| {
 | |
|         Matrix L = LLt(A);
 | |
|         Matrix inv(boost::numeric::ublas::identity_matrix<double>(A.size1()));
 | |
|         inplace_solve (L, inv, BNU::lower_tag ());
 | |
|         return BNU::prod(trans(inv), inv);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** SVD                                                                      */
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| // version with in place modification of A
 | |
| void svd(Matrix& A, Vector& s, Matrix& V, bool sort) {
 | |
| 
 | |
|   const size_t m=A.size1(), n=A.size2();
 | |
| 
 | |
|   double * q = new double[n]; // singular values
 | |
| 
 | |
|   // create NRC matrices, u is in place
 | |
|   V = Matrix(n,n);
 | |
|   double **u = createNRC(A), **v = createNRC(V);
 | |
| 
 | |
|   // perform SVD
 | |
|   // need to pass pointer - 1 in NRC routines so u[1][1] is first element !
 | |
|   svdcmp(u-1,m,n,q-1,v-1, sort);
 | |
| 	
 | |
|   // copy singular values back
 | |
|   s.resize(n);
 | |
|   copy(q,q+n,s.begin());
 | |
| 
 | |
|   delete[] v;
 | |
|   delete[] q; //switched to array delete
 | |
|   delete[] u;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void svd(const Matrix& A, Matrix& U, Vector& s, Matrix& V, bool sort) {
 | |
|   U = A;      // copy
 | |
|   svd(U,s,V,sort); // call in-place version
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /* ************************************************************************* */
 | |
| // TODO, would be faster with Cholesky
 | |
| Matrix inverse_square_root(const Matrix& A) {
 | |
|   size_t m = A.size2(), n = A.size1();
 | |
| 	if (m!=n)
 | |
| 		throw invalid_argument("inverse_square_root: A must be square");
 | |
| 
 | |
| 	// Perform SVD, TODO: symmetric SVD?
 | |
| 	Matrix U,V;
 | |
| 	Vector S;
 | |
| 	svd(A,U,S,V);
 | |
| 
 | |
| 	// invert and sqrt diagonal of S
 | |
| 	// We also arbitrarily choose sign to make result have positive signs
 | |
|   for(size_t i = 0; i<m; i++) S(i) = - pow(S(i),-0.5);
 | |
|   return vector_scale(S, V); // V*S;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // New, improved, with 100% more Cholesky goodness!
 | |
| //
 | |
| // Semantics: 
 | |
| // if B = inverse_square_root(A), then all of the following are true:
 | |
| // inv(B) * inv(B)' == A
 | |
| // inv(B' * B) == A
 | |
| Matrix inverse_square_root(const Matrix& A) {
 | |
| 	Matrix L = LLt(A);
 | |
|         Matrix inv(boost::numeric::ublas::identity_matrix<double>(A.size1()));
 | |
|         inplace_solve (L, inv, BNU::lower_tag ());
 | |
| 	return inv;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix square_root_positive(const Matrix& A) {
 | |
|   size_t m = A.size2(), n = A.size1();
 | |
|   if (m!=n)
 | |
|     throw invalid_argument("inverse_square_root: A must be square");
 | |
| 
 | |
|   // Perform SVD, TODO: symmetric SVD?
 | |
|   Matrix U,V;
 | |
|   Vector S;
 | |
|   svd(A,U,S,V,false);
 | |
| 
 | |
|   // invert and sqrt diagonal of S
 | |
|   // We also arbitrarily choose sign to make result have positive signs
 | |
|   for(size_t i = 0; i<m; i++) S(i) = - pow(S(i),0.5);
 | |
|   return vector_scale(S, V); // V*S;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| } // namespace gtsam
 |