229 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file testQPSolver.cpp
 | 
						|
 * @brief Test simple QP solver for a linear inequality constraint
 | 
						|
 * @date Apr 10, 2014
 | 
						|
 * @author Duy-Nguyen Ta
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/inference/FactorGraph-inst.h>
 | 
						|
#include <gtsam/linear/VectorValues.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam_unstable/linear/EqualityFactorGraph.h>
 | 
						|
#include <gtsam_unstable/linear/InequalityFactorGraph.h>
 | 
						|
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
#include <boost/foreach.hpp>
 | 
						|
#include <boost/range/adaptor/map.hpp>
 | 
						|
 | 
						|
#include <gtsam_unstable/linear/LPSolver.h>
 | 
						|
#include <gtsam_unstable/linear/LPInitSolverMatlab.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace gtsam::symbol_shorthand;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/**
 | 
						|
 * min -x1-x2
 | 
						|
 * s.t.   x1 + 2x2 <= 4
 | 
						|
 *       4x1 + 2x2 <= 12
 | 
						|
 *       -x1 +  x2 <= 1
 | 
						|
 *       x1, x2 >= 0
 | 
						|
 */
 | 
						|
LP simpleLP1() {
 | 
						|
  LP lp;
 | 
						|
  lp.cost = LinearCost(1, Vector2(-1., -1.)); // min -x1-x2 (max x1+x2)
 | 
						|
  lp.inequalities.push_back(LinearInequality(1, Vector2(-1, 0), 0, 1)); // x1 >= 0
 | 
						|
  lp.inequalities.push_back(LinearInequality(1, Vector2(0, -1), 0, 2)); //  x2 >= 0
 | 
						|
  lp.inequalities.push_back(LinearInequality(1, Vector2(1, 2), 4, 3)); //  x1 + 2*x2 <= 4
 | 
						|
  lp.inequalities.push_back(LinearInequality(1, Vector2(4, 2), 12, 4)); //  4x1 + 2x2 <= 12
 | 
						|
  lp.inequalities.push_back(LinearInequality(1, Vector2(-1, 1), 1, 5)); //  -x1 + x2 <= 1
 | 
						|
  return lp;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
namespace gtsam {
 | 
						|
TEST(LPInitSolverMatlab, infinite_loop_multi_var) {
 | 
						|
  LP initchecker;
 | 
						|
  Key X = symbol('X',1);
 | 
						|
  Key Y = symbol('Y',1);
 | 
						|
  Key Z = symbol('Z',1);
 | 
						|
  initchecker.cost = LinearCost(Z, ones(1)); //min alpha
 | 
						|
//  initchecker.cost = LinearCost(Z, ones(1), X, zero(1), Y, zero(1)); //min alpha
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(X,-2.0*ones(1), Y, -1.0*ones(1), Z, -1.0*ones(1),-2,1));//-2x-y-alpha <= -2
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(X, -1.0*ones(1), Y, 2.0*ones(1), Z, -1.0*ones(1), 6, 2));// -x+2y-alpha <= 6
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(X, -1.0*ones(1), Z, -1.0*ones(1), 0,3));// -x - alpha <= 0
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(X, 1.0*ones(1), Z, -1.0*ones(1), 20, 4));//x - alpha <= 20
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(Y, -1.0*ones(1), Z, -1.0*ones(1), 0, 5));// -y - alpha <= 0
 | 
						|
  LPSolver solver(initchecker);
 | 
						|
  VectorValues starter;
 | 
						|
  starter.insert(X, zero(1));
 | 
						|
  starter.insert(Y, zero(1));
 | 
						|
  starter.insert(Z, 2*ones(1));
 | 
						|
  VectorValues results, duals;
 | 
						|
  boost::tie(results, duals) = solver.optimize(starter);
 | 
						|
  VectorValues expected;
 | 
						|
  expected.insert(X, Vector::Constant(1, 13.5));
 | 
						|
  expected.insert(Y, Vector::Constant(1,6.5));
 | 
						|
  expected.insert(Z, Vector::Constant(1,-6.5));
 | 
						|
  CHECK(assert_equal(results, expected, 1e-7));
 | 
						|
}
 | 
						|
 | 
						|
TEST(LPInitSolverMatlab, infinite_loop_single_var) {
 | 
						|
  LP initchecker;
 | 
						|
  initchecker.cost = LinearCost(1,Vector3(0,0,1)); //min alpha
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(1, Vector3(-2,-1,-1),-2,1));//-2x-y-alpha <= -2 
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(1, Vector3(-1,2,-1), 6, 2));// -x+2y-alpha <= 6
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(1, Vector3(-1,0,-1), 0,3));// -x - alpha <= 0
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(1, Vector3(1,0,-1), 20, 4));//x - alpha <= 20
 | 
						|
  initchecker.inequalities.push_back(LinearInequality(1, Vector3(0,-1,-1),0, 5));// -y - alpha <= 0
 | 
						|
  LPSolver solver(initchecker);
 | 
						|
  VectorValues starter;
 | 
						|
  starter.insert(1,Vector3(0,0,2));
 | 
						|
  VectorValues results, duals;
 | 
						|
  boost::tie(results, duals) = solver.optimize(starter);
 | 
						|
  VectorValues expected;
 | 
						|
  expected.insert(1, Vector3(13.5, 6.5, -6.5));
 | 
						|
  CHECK(assert_equal(results, expected, 1e-7));
 | 
						|
}
 | 
						|
TEST(LPInitSolverMatlab, initialization) {
 | 
						|
  LP lp = simpleLP1();
 | 
						|
  LPSolver lpSolver(lp);
 | 
						|
  LPInitSolverMatlab initSolver(lpSolver);
 | 
						|
 | 
						|
  GaussianFactorGraph::shared_ptr initOfInitGraph = initSolver.buildInitOfInitGraph();
 | 
						|
  VectorValues x0 = initOfInitGraph->optimize();
 | 
						|
  VectorValues expected_x0;
 | 
						|
  expected_x0.insert(1, zero(2));
 | 
						|
  CHECK(assert_equal(expected_x0, x0, 1e-10));
 | 
						|
 | 
						|
  double y0 = initSolver.compute_y0(x0);
 | 
						|
  double expected_y0 = 0.0;
 | 
						|
  DOUBLES_EQUAL(expected_y0, y0, 1e-7);
 | 
						|
 | 
						|
  Key yKey = 2;
 | 
						|
  LP::shared_ptr initLP = initSolver.buildInitialLP(yKey);
 | 
						|
  LP expectedInitLP;
 | 
						|
  expectedInitLP.cost = LinearCost(yKey, ones(1));
 | 
						|
  expectedInitLP.inequalities.push_back(
 | 
						|
      LinearInequality(1, Vector2( -1, 0), 2, Vector::Constant(1, -1), 0, 1)); // -x1 - y <= 0
 | 
						|
  expectedInitLP.inequalities.push_back(
 | 
						|
      LinearInequality(1, Vector2( 0, -1), 2, Vector::Constant(1, -1), 0, 2));// -x2 - y <= 0
 | 
						|
  expectedInitLP.inequalities.push_back(
 | 
						|
      LinearInequality(1, Vector2( 1, 2), 2, Vector::Constant(1, -1), 4, 3));//  x1 + 2*x2 - y <= 4
 | 
						|
  expectedInitLP.inequalities.push_back(
 | 
						|
      LinearInequality(1, Vector2( 4, 2), 2, Vector::Constant(1, -1), 12, 4));//  4x1 + 2x2 - y <= 12
 | 
						|
  expectedInitLP.inequalities.push_back(
 | 
						|
      LinearInequality(1, Vector2( -1, 1), 2, Vector::Constant(1, -1), 1, 5));//  -x1 + x2 - y <= 1
 | 
						|
  CHECK(assert_equal(expectedInitLP, *initLP, 1e-10));
 | 
						|
  LPSolver lpSolveInit(*initLP);
 | 
						|
  VectorValues xy0(x0);
 | 
						|
  xy0.insert(yKey, Vector::Constant(1, y0));
 | 
						|
  VectorValues xyInit = lpSolveInit.optimize(xy0).first;
 | 
						|
  VectorValues expected_init;
 | 
						|
  expected_init.insert(1, Vector2( 1, 1));
 | 
						|
  expected_init.insert(2, Vector::Constant(1, -1));
 | 
						|
  CHECK(assert_equal(expected_init, xyInit, 1e-10));
 | 
						|
 | 
						|
  VectorValues x = initSolver.solve();
 | 
						|
  CHECK(lp.isFeasible(x));
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/**
 | 
						|
 * TEST gtsam solver with an over-constrained system
 | 
						|
 *  x + y = 1
 | 
						|
 *  x - y = 5
 | 
						|
 *  x + 2y = 6
 | 
						|
 */
 | 
						|
TEST(LPSolver, overConstrainedLinearSystem) {
 | 
						|
GaussianFactorGraph graph;
 | 
						|
Matrix A1 = Vector3(1,1,1);
 | 
						|
Matrix A2 = Vector3(1,-1,2);
 | 
						|
Vector b = Vector3( 1, 5, 6);
 | 
						|
JacobianFactor factor(1, A1, 2, A2, b, noiseModel::Constrained::All(3));
 | 
						|
graph.push_back(factor);
 | 
						|
 | 
						|
VectorValues x = graph.optimize();
 | 
						|
// This check confirms that gtsam linear constraint solver can't handle over-constrained system
 | 
						|
CHECK(factor.error(x) != 0.0);
 | 
						|
}
 | 
						|
 | 
						|
TEST(LPSolver, overConstrainedLinearSystem2) {
 | 
						|
GaussianFactorGraph graph;
 | 
						|
graph.push_back(JacobianFactor(1, ones(1, 1), 2, ones(1, 1), ones(1), noiseModel::Constrained::All(1)));
 | 
						|
graph.push_back(JacobianFactor(1, ones(1, 1), 2, -ones(1, 1), 5*ones(1), noiseModel::Constrained::All(1)));
 | 
						|
graph.push_back(JacobianFactor(1, ones(1, 1), 2, 2*ones(1, 1), 6*ones(1), noiseModel::Constrained::All(1)));
 | 
						|
VectorValues x = graph.optimize();
 | 
						|
// This check confirms that gtsam linear constraint solver can't handle over-constrained system
 | 
						|
CHECK(graph.error(x) != 0.0);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LPSolver, simpleTest1) {
 | 
						|
LP lp = simpleLP1();
 | 
						|
LPSolver lpSolver(lp);
 | 
						|
VectorValues init;
 | 
						|
init.insert(1, zero(2));
 | 
						|
 | 
						|
VectorValues x1 = lpSolver.solveWithCurrentWorkingSet(init,
 | 
						|
    InequalityFactorGraph());
 | 
						|
VectorValues expected_x1;
 | 
						|
expected_x1.insert(1, Vector2( 1, 1));
 | 
						|
CHECK(assert_equal(expected_x1, x1, 1e-10));
 | 
						|
 | 
						|
VectorValues result, duals;
 | 
						|
boost::tie(result, duals) = lpSolver.optimize(init);
 | 
						|
VectorValues expectedResult;
 | 
						|
expectedResult.insert(1, Vector2(8./3., 2./3.));
 | 
						|
CHECK(assert_equal(expectedResult, result, 1e-10));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LPSolver, testWithoutInitialValues) {
 | 
						|
LP lp = simpleLP1();
 | 
						|
LPSolver lpSolver(lp);
 | 
						|
VectorValues result,duals, expectedResult;
 | 
						|
expectedResult.insert(1, Vector2(8./3., 2./3.));
 | 
						|
boost::tie(result, duals) = lpSolver.optimize();
 | 
						|
CHECK(assert_equal(expectedResult, result));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * TODO: More TEST cases:
 | 
						|
 * - Infeasible
 | 
						|
 * - Unbounded
 | 
						|
 * - Underdetermined
 | 
						|
 */
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LPSolver, LinearCost) {
 | 
						|
LinearCost cost(1, Vector3( 2., 4., 6.));
 | 
						|
VectorValues x;
 | 
						|
x.insert(1, Vector3( 1., 3., 5.));
 | 
						|
double error = cost.error(x);
 | 
						|
double expectedError = 44.0;
 | 
						|
DOUBLES_EQUAL(expectedError, error, 1e-100);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
TestResult tr;
 | 
						|
return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 | 
						|
 |