162 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    Rot3.cpp
 | |
|  * @brief   Rotation (internal: 3*3 matrix representation*)
 | |
|  * @author  Alireza Fathi
 | |
|  * @author  Christian Potthast
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include "Rot3.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	bool Rot3::equals(const Rot3 & R, double tol) const {
 | |
| 		return equal_with_abs_tol(matrix(), R.matrix(), tol);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	/** faster than below ?                                                      */
 | |
| 	/* ************************************************************************* */
 | |
| 	Rot3 rodriguez(const Vector& w, double t) {
 | |
| 		double l_w = 0.0;
 | |
| 		for (int i = 0; i < 3; i++)
 | |
| 			l_w += pow(w(i), 2.0);
 | |
| 		if (l_w != 1.0) throw domain_error("rodriguez: length of w should be 1");
 | |
| 
 | |
| 		double ct = cos(t), st = sin(t);
 | |
| 
 | |
| 		Point3 r1 = Point3(ct + w(0) * w(0) * (1 - ct), w(2) * st + w(0) * w(1) * (1 - ct), -w(1) * st + w(0) * w(2) * (1 - ct));
 | |
| 		Point3 r2 = Point3(w(1) * w(0) * (1 - ct) - w(2) * st, w(1) * w(1) * (1 - ct) + ct, w(1) * w(2) * (1 - ct) + w(0) * st);
 | |
| 		Point3 r3 = Point3(w(1) * st + w(2) * w(0) * (1 - ct), -w(0) * st + w(2) * w(1) * (1 - ct), ct + w(2) * w(2) * (1 - ct));
 | |
| 
 | |
| 		return Rot3(r1, r2, r3);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Rot3 rodriguez(double wx, double wy, double wz) {
 | |
| 		Matrix J = skewSymmetric(wx, wy, wz);
 | |
| 		double t2 = wx * wx + wy * wy + wz * wz;
 | |
| 		if (t2 < 1e-10) return Rot3();
 | |
| 		double t = sqrt(t2);
 | |
| 		Matrix R = eye(3, 3) + sin(t) / t * J + (1.0 - cos(t)) / t2 * (J * J);
 | |
| 		return R; // matrix constructor will be tripped
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Rot3 rodriguez(const Vector& v) {
 | |
| 		return rodriguez(v(0), v(1), v(2));
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Rot3 exmap(const Rot3& R, const Vector& v) {
 | |
| 		return rodriguez(v) * R;
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Rot3 Rot3::exmap(const Vector& v) const {
 | |
| 		if (zero(v)) return (*this);
 | |
| 		return rodriguez(v) * (*this);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Point3 rotate(const Rot3& R, const Point3& p) {
 | |
| 		return R * p;
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Matrix Drotate1(const Rot3& R, const Point3& p) {
 | |
| 		Point3 q = R * p;
 | |
| 		return skewSymmetric(-q.x(), -q.y(), -q.z());
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Matrix Drotate2(const Rot3& R) {
 | |
| 		return R.matrix();
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Point3 unrotate(const Rot3& R, const Point3& p) {
 | |
| 		return R.unrotate(p);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	/** see libraries/caml/geometry/math.lyx, derivative of unrotate              */
 | |
| 	/* ************************************************************************* */
 | |
| 	Matrix Dunrotate1(const Rot3 & R, const Point3 & p) {
 | |
| 		Point3 q = R.unrotate(p);
 | |
| 		return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose();
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	Matrix Dunrotate2(const Rot3 & R) {
 | |
| 		return R.transpose();
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	/** This function receives a rotation 3 by 3 matrix and returns 3 rotation angles.
 | |
| 	 *  The implementation is based on the algorithm in multiple view geometry
 | |
| 	 *  the function returns a vector that its arguments are: thetax, thetay, thetaz in radians.
 | |
| 	 */
 | |
| 	/* ************************************************************************* */
 | |
| 	Vector RQ(Matrix R) {
 | |
| 		double Cx = R(2, 2) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow(
 | |
| 				(double) (R(2, 1)), 2.0)))); //cosX
 | |
| 		double Sx = -R(2, 1) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow(
 | |
| 				(double) (R(2, 1)), 2.0)))); //sinX
 | |
| 		Matrix Qx(3, 3);
 | |
| 		for (int i = 0; i < 3; i++)
 | |
| 			for (int j = 0; j < 3; j++)
 | |
| 				Qx(i, j) = 0;
 | |
| 
 | |
| 		Qx(0, 0) = 1;
 | |
| 		Qx(1, 1) = Cx;
 | |
| 		Qx(1, 2) = -Sx;
 | |
| 		Qx(2, 1) = Sx;
 | |
| 		Qx(2, 2) = Cx;
 | |
| 		R = R * Qx;
 | |
| 		double Cy = R(2, 2) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R(
 | |
| 				2, 0)), 2.0))); //cosY
 | |
| 		double Sy = R(2, 0) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R(
 | |
| 				2, 0)), 2.0))); //sinY
 | |
| 		Matrix Qy(3, 3);
 | |
| 		for (int i = 0; i < 3; i++)
 | |
| 			for (int j = 0; j < 3; j++)
 | |
| 				Qy(i, j) = 0;
 | |
| 
 | |
| 		Qy(0, 0) = Cy;
 | |
| 		Qy(0, 2) = Sy;
 | |
| 		Qy(1, 1) = 1;
 | |
| 		Qy(2, 0) = -Sy;
 | |
| 		Qy(2, 2) = Cy;
 | |
| 		R = R * Qy;
 | |
| 		double Cz = R(1, 1) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow((double) (R(
 | |
| 				1, 0)), 2.0))); //cosZ
 | |
| 		double Sz = -R(1, 0) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow(
 | |
| 				(double) (R(1, 0)), 2.0)));//sinZ
 | |
| 		Matrix Qz(3, 3);
 | |
| 		for (int i = 0; i < 3; i++)
 | |
| 			for (int j = 0; j < 3; j++)
 | |
| 				Qz(i, j) = 0;
 | |
| 		Qz(0, 0) = Cz;
 | |
| 		Qz(0, 1) = -Sz;
 | |
| 		Qz(1, 0) = Sz;
 | |
| 		Qz(1, 1) = Cz;
 | |
| 		Qz(2, 2) = 1;
 | |
| 		R = R * Qz;
 | |
| 		double pi = atan2(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0) * 4.0;
 | |
| 
 | |
| 		Vector result(3);
 | |
| 		result(0) = -atan2(Sx, Cx);
 | |
| 		result(1) = -atan2(Sy, Cy);
 | |
| 		result(2) = -atan2(Sz, Cz);
 | |
| 
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| } // namespace gtsam
 |