317 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file   Hybrid_City10000.cpp
 | |
|  * @brief  Example of using hybrid estimation
 | |
|  *         with multiple odometry measurements.
 | |
|  * @author Varun Agrawal
 | |
|  * @date   January 22, 2025
 | |
|  */
 | |
| 
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/hybrid/HybridNonlinearFactor.h>
 | |
| #include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
 | |
| #include <gtsam/hybrid/HybridSmoother.h>
 | |
| #include <gtsam/hybrid/HybridValues.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #include <cstdlib>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "City10000.h"
 | |
| 
 | |
| using namespace gtsam;
 | |
| 
 | |
| using symbol_shorthand::L;
 | |
| using symbol_shorthand::M;
 | |
| using symbol_shorthand::X;
 | |
| 
 | |
| // Experiment Class
 | |
| class Experiment {
 | |
|   /// The City10000 dataset
 | |
|   City10000Dataset dataset_;
 | |
| 
 | |
|  public:
 | |
|   // Parameters with default values
 | |
|   size_t maxLoopCount = 8000;
 | |
| 
 | |
|   // 3000: {1: 62s, 2: 21s, 3: 20s, 4: 31s, 5: 39s} No DT optimizations
 | |
|   // 3000: {1: 65s, 2: 20s, 3: 16s, 4: 21s, 5: 28s} With DT optimizations
 | |
|   // 3000: {1: 59s, 2: 19s, 3: 18s, 4: 26s, 5: 33s} With DT optimizations +
 | |
|   // merge
 | |
|   size_t updateFrequency = 3;
 | |
| 
 | |
|   size_t maxNrHypotheses = 10;
 | |
| 
 | |
|   size_t reLinearizationFrequency = 10;
 | |
| 
 | |
|   double marginalThreshold = 0.9999;
 | |
| 
 | |
|  private:
 | |
|   HybridSmoother smoother_;
 | |
|   HybridNonlinearFactorGraph newFactors_, allFactors_;
 | |
|   Values initial_;
 | |
| 
 | |
|   /**
 | |
|    * @brief Create a hybrid loop closure factor where
 | |
|    * 0 - loose noise model and 1 - loop noise model.
 | |
|    */
 | |
|   HybridNonlinearFactor hybridLoopClosureFactor(
 | |
|       size_t loopCounter, size_t keyS, size_t keyT,
 | |
|       const Pose2& measurement) const {
 | |
|     DiscreteKey l(L(loopCounter), 2);
 | |
| 
 | |
|     auto f0 = std::make_shared<BetweenFactor<Pose2>>(
 | |
|         X(keyS), X(keyT), measurement, kOpenLoopModel);
 | |
|     auto f1 = std::make_shared<BetweenFactor<Pose2>>(
 | |
|         X(keyS), X(keyT), measurement, kPoseNoiseModel);
 | |
| 
 | |
|     std::vector<NonlinearFactorValuePair> factors{{f0, kOpenLoopConstant},
 | |
|                                                   {f1, kPoseNoiseConstant}};
 | |
|     HybridNonlinearFactor mixtureFactor(l, factors);
 | |
|     return mixtureFactor;
 | |
|   }
 | |
| 
 | |
|   /// @brief Create hybrid odometry factor with discrete measurement choices.
 | |
|   HybridNonlinearFactor hybridOdometryFactor(
 | |
|       size_t numMeasurements, size_t keyS, size_t keyT, const DiscreteKey& m,
 | |
|       const std::vector<Pose2>& poseArray) const {
 | |
|     auto f0 = std::make_shared<BetweenFactor<Pose2>>(
 | |
|         X(keyS), X(keyT), poseArray[0], kPoseNoiseModel);
 | |
|     auto f1 = std::make_shared<BetweenFactor<Pose2>>(
 | |
|         X(keyS), X(keyT), poseArray[1], kPoseNoiseModel);
 | |
| 
 | |
|     std::vector<NonlinearFactorValuePair> factors{{f0, kPoseNoiseConstant},
 | |
|                                                   {f1, kPoseNoiseConstant}};
 | |
|     HybridNonlinearFactor mixtureFactor(m, factors);
 | |
|     return mixtureFactor;
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform smoother update and optimize the graph.
 | |
|   clock_t smootherUpdate(size_t maxNrHypotheses) {
 | |
|     std::cout << "Smoother update: " << newFactors_.size() << std::endl;
 | |
|     gttic_(SmootherUpdate);
 | |
|     clock_t beforeUpdate = clock();
 | |
|     auto linearized = newFactors_.linearize(initial_);
 | |
|     smoother_.update(*linearized, initial_);
 | |
|     allFactors_.push_back(newFactors_);
 | |
|     newFactors_.resize(0);
 | |
|     clock_t afterUpdate = clock();
 | |
|     return afterUpdate - beforeUpdate;
 | |
|   }
 | |
| 
 | |
|   /// @brief Re-linearize, solve ALL, and re-initialize smoother.
 | |
|   clock_t reInitialize() {
 | |
|     std::cout << "================= Re-Initialize: " << allFactors_.size()
 | |
|               << std::endl;
 | |
|     clock_t beforeUpdate = clock();
 | |
|     allFactors_ = allFactors_.restrict(smoother_.fixedValues());
 | |
|     auto linearized = allFactors_.linearize(initial_);
 | |
|     auto bayesNet = linearized->eliminateSequential();
 | |
|     HybridValues delta = bayesNet->optimize();
 | |
|     initial_ = initial_.retract(delta.continuous());
 | |
|     smoother_.reInitialize(std::move(*bayesNet));
 | |
|     clock_t afterUpdate = clock();
 | |
|     std::cout << "Took " << (afterUpdate - beforeUpdate) / CLOCKS_PER_SEC
 | |
|               << " seconds." << std::endl;
 | |
|     return afterUpdate - beforeUpdate;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   /// Construct with filename of experiment to run
 | |
|   explicit Experiment(const std::string& filename)
 | |
|       : dataset_(filename), smoother_(marginalThreshold) {}
 | |
| 
 | |
|   /// @brief Run the main experiment with a given maxLoopCount.
 | |
|   void run() {
 | |
|     // Initialize local variables
 | |
|     size_t discreteCount = 0, index = 0, loopCount = 0, updateCount = 0;
 | |
| 
 | |
|     std::list<double> timeList;
 | |
| 
 | |
|     // Set up initial prior
 | |
|     Pose2 priorPose(0, 0, 0);
 | |
|     initial_.insert(X(0), priorPose);
 | |
|     newFactors_.push_back(
 | |
|         PriorFactor<Pose2>(X(0), priorPose, kPriorNoiseModel));
 | |
| 
 | |
|     // Initial update
 | |
|     auto time = smootherUpdate(maxNrHypotheses);
 | |
|     std::vector<std::pair<size_t, double>> smootherUpdateTimes;
 | |
|     smootherUpdateTimes.push_back({index, time});
 | |
| 
 | |
|     // Flag to decide whether to run smoother update
 | |
|     size_t numberOfHybridFactors = 0;
 | |
| 
 | |
|     // Start main loop
 | |
|     Values result;
 | |
|     size_t keyS = 0, keyT = 0;
 | |
|     clock_t startTime = clock();
 | |
| 
 | |
|     std::vector<Pose2> poseArray;
 | |
|     std::pair<size_t, size_t> keys;
 | |
| 
 | |
|     while (dataset_.next(&poseArray, &keys) && index < maxLoopCount) {
 | |
|       keyS = keys.first;
 | |
|       keyT = keys.second;
 | |
|       size_t numMeasurements = poseArray.size();
 | |
| 
 | |
|       // Take the first one as the initial estimate
 | |
|       Pose2 odomPose = poseArray[0];
 | |
|       if (keyS == keyT - 1) {
 | |
|         // Odometry factor
 | |
|         if (numMeasurements > 1) {
 | |
|           // Add hybrid factor
 | |
|           DiscreteKey m(M(discreteCount), numMeasurements);
 | |
|           HybridNonlinearFactor mixtureFactor =
 | |
|               hybridOdometryFactor(numMeasurements, keyS, keyT, m, poseArray);
 | |
|           newFactors_.push_back(mixtureFactor);
 | |
|           discreteCount++;
 | |
|           numberOfHybridFactors += 1;
 | |
|           std::cout << "mixtureFactor: " << keyS << " " << keyT << std::endl;
 | |
|         } else {
 | |
|           newFactors_.add(BetweenFactor<Pose2>(X(keyS), X(keyT), odomPose,
 | |
|                                                kPoseNoiseModel));
 | |
|         }
 | |
|         // Insert next pose initial guess
 | |
|         initial_.insert(X(keyT), initial_.at<Pose2>(X(keyS)) * odomPose);
 | |
|       } else {
 | |
|         // Loop closure
 | |
|         HybridNonlinearFactor loopFactor =
 | |
|             hybridLoopClosureFactor(loopCount, keyS, keyT, odomPose);
 | |
|         // print loop closure event keys:
 | |
|         std::cout << "Loop closure: " << keyS << " " << keyT << std::endl;
 | |
|         newFactors_.add(loopFactor);
 | |
|         numberOfHybridFactors += 1;
 | |
|         loopCount++;
 | |
|       }
 | |
| 
 | |
|       if (numberOfHybridFactors >= updateFrequency) {
 | |
|         auto time = smootherUpdate(maxNrHypotheses);
 | |
|         smootherUpdateTimes.push_back({index, time});
 | |
|         numberOfHybridFactors = 0;
 | |
|         updateCount++;
 | |
| 
 | |
|         if (updateCount % reLinearizationFrequency == 0) {
 | |
|           reInitialize();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Record timing for odometry edges only
 | |
|       if (keyS == keyT - 1) {
 | |
|         clock_t curTime = clock();
 | |
|         timeList.push_back(curTime - startTime);
 | |
|       }
 | |
| 
 | |
|       // Print some status every 100 steps
 | |
|       if (index % 100 == 0) {
 | |
|         std::cout << "Index: " << index << std::endl;
 | |
|         if (!timeList.empty()) {
 | |
|           std::cout << "Acc_time: " << timeList.back() / CLOCKS_PER_SEC
 | |
|                     << " seconds" << std::endl;
 | |
|           // delta.discrete().print("The Discrete Assignment");
 | |
|           tictoc_finishedIteration_();
 | |
|           tictoc_print_();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       index++;
 | |
|     }
 | |
| 
 | |
|     // Final update
 | |
|     time = smootherUpdate(maxNrHypotheses);
 | |
|     smootherUpdateTimes.push_back({index, time});
 | |
| 
 | |
|     // Final optimize
 | |
|     gttic_(HybridSmootherOptimize);
 | |
|     HybridValues delta = smoother_.optimize();
 | |
|     gttoc_(HybridSmootherOptimize);
 | |
| 
 | |
|     result.insert_or_assign(initial_.retract(delta.continuous()));
 | |
| 
 | |
|     std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta)
 | |
|               << std::endl;
 | |
| 
 | |
|     clock_t endTime = clock();
 | |
|     clock_t totalTime = endTime - startTime;
 | |
|     std::cout << "Total time: " << totalTime / CLOCKS_PER_SEC << " seconds"
 | |
|               << std::endl;
 | |
| 
 | |
|     // Write results to file
 | |
|     writeResult(result, keyT + 1, "Hybrid_City10000.txt");
 | |
| 
 | |
|     // Write timing info to file
 | |
|     std::ofstream outfileTime;
 | |
|     std::string timeFileName = "Hybrid_City10000_time.txt";
 | |
|     outfileTime.open(timeFileName);
 | |
|     for (auto accTime : timeList) {
 | |
|       outfileTime << accTime << std::endl;
 | |
|     }
 | |
|     outfileTime.close();
 | |
|     std::cout << "Output " << timeFileName << " file." << std::endl;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Function to parse command-line arguments
 | |
| void parseArguments(int argc, char* argv[], size_t& maxLoopCount,
 | |
|                     size_t& updateFrequency, size_t& maxNrHypotheses) {
 | |
|   for (int i = 1; i < argc; ++i) {
 | |
|     std::string arg = argv[i];
 | |
|     if (arg == "--max-loop-count" && i + 1 < argc) {
 | |
|       maxLoopCount = std::stoul(argv[++i]);
 | |
|     } else if (arg == "--update-frequency" && i + 1 < argc) {
 | |
|       updateFrequency = std::stoul(argv[++i]);
 | |
|     } else if (arg == "--max-nr-hypotheses" && i + 1 < argc) {
 | |
|       maxNrHypotheses = std::stoul(argv[++i]);
 | |
|     } else if (arg == "--help") {
 | |
|       std::cout << "Usage: " << argv[0] << " [options]\n"
 | |
|                 << "Options:\n"
 | |
|                 << "  --max-loop-count <value>       Set the maximum loop "
 | |
|                    "count (default: 3000)\n"
 | |
|                 << "  --update-frequency <value>     Set the update frequency "
 | |
|                    "(default: 3)\n"
 | |
|                 << "  --max-nr-hypotheses <value>    Set the maximum number of "
 | |
|                    "hypotheses (default: 10)\n"
 | |
|                 << "  --help                         Show this help message\n";
 | |
|       std::exit(0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Main function
 | |
| int main(int argc, char* argv[]) {
 | |
|   Experiment experiment(findExampleDataFile("T1_city10000_04.txt"));
 | |
|   // Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only
 | |
|   // Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only
 | |
|   // Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 +
 | |
|   // Type #3
 | |
| 
 | |
|   // Parse command-line arguments
 | |
|   parseArguments(argc, argv, experiment.maxLoopCount,
 | |
|                  experiment.updateFrequency, experiment.maxNrHypotheses);
 | |
| 
 | |
|   // Run the experiment
 | |
|   experiment.run();
 | |
| 
 | |
|   return 0;
 | |
| }
 |