76 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file GNCExample.cpp
 | 
						|
 * @brief Simple example showcasing a Graduated Non-Convexity based solver
 | 
						|
 * @author Achintya Mohan
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * A simple 2D pose graph optimization example
 | 
						|
 * - The robot is initially at origin (0.0, 0.0, 0.0) 
 | 
						|
 * - We have full odometry measurements for 2 motions
 | 
						|
 * - The robot first moves to (1.0, 0.0, 0.1) and then to (1.0, 1.0, 0.2) 
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/nonlinear/GncOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/GncParams.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtParams.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
int main() {
 | 
						|
  cout << "Graduated Non-Convexity Example\n";
 | 
						|
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
 | 
						|
  // Add a prior to the first point, set to the origin
 | 
						|
  auto priorNoise = noiseModel::Isotropic::Sigma(3, 0.1);
 | 
						|
  graph.addPrior(1, Pose2(0.0, 0.0, 0.0), priorNoise);
 | 
						|
 | 
						|
  // Add additional factors, noise models must be Gaussian 
 | 
						|
  Pose2 x1(1.0, 0.0, 0.1);
 | 
						|
  graph.emplace_shared<BetweenFactor<Pose2>>(1, 2, x1, noiseModel::Isotropic::Sigma(3, 0.2));
 | 
						|
  Pose2 x2(0.0, 1.0, 0.1);
 | 
						|
  graph.emplace_shared<BetweenFactor<Pose2>>(2, 3, x2, noiseModel::Isotropic::Sigma(3, 0.4));
 | 
						|
 | 
						|
  // Initial estimates
 | 
						|
  Values initial;
 | 
						|
  initial.insert(1, Pose2(0.2, 0.5, -0.1));
 | 
						|
  initial.insert(2, Pose2(0.8, 0.3, 0.1));
 | 
						|
  initial.insert(3, Pose2(0.8, 0.2, 0.3));
 | 
						|
 | 
						|
  // Set options for the non-minimal solver
 | 
						|
  LevenbergMarquardtParams lmParams;
 | 
						|
  lmParams.setMaxIterations(1000);
 | 
						|
  lmParams.setRelativeErrorTol(1e-5);
 | 
						|
 | 
						|
  // Set GNC-specific options
 | 
						|
  GncParams<LevenbergMarquardtParams> gncParams(lmParams);
 | 
						|
  gncParams.setLossType(GncLossType::TLS);
 | 
						|
 | 
						|
  // Optimize the graph and print results
 | 
						|
  GncOptimizer<GncParams<LevenbergMarquardtParams>> optimizer(graph, initial, gncParams);
 | 
						|
  Values result = optimizer.optimize();
 | 
						|
  result.print("Final Result:");
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 |