gtsam/gtsam_unstable/examples/SmartProjectionFactorExampl...

394 lines
15 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartProjectionFactorTesting.cpp
* @brief Example usage of SmartProjectionFactor using real datasets
* @date August, 2013
* @author Luca Carlone
*/
// Use a map to store landmark/smart factor pairs
#include <gtsam/base/FastMap.h>
// Both relative poses and recovered trajectory poses will be stored as Pose3 objects
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Cal3Bundler.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// We want to use iSAM2 to solve the range-SLAM problem incrementally
#include <gtsam/nonlinear/ISAM2.h>
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
// and initial guesses for any new variables used in the added factors
#include <gtsam/nonlinear/Values.h>
// We will use a non-linear solver to batch-initialize from the first 150 frames
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam_unstable/slam/SmartProjectionFactorsCreator.h>
#include <gtsam_unstable/slam/GenericProjectionFactorsCreator.h>
// Standard headers, added last, so we know headers above work on their own
#include <boost/foreach.hpp>
#include <boost/assign.hpp>
#include <boost/assign/std/vector.hpp>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
namespace NM = gtsam::noiseModel;
#define USE_BUNDLER
using symbol_shorthand::X;
using symbol_shorthand::L;
typedef PriorFactor<Pose3> Pose3Prior;
typedef FastMap<Key, int> OrderingMap;
#ifdef USE_BUNDLER
typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> SmartFactorsCreator;
typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> ProjectionFactorsCreator;
#else
typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3_S2> SmartFactorsCreator;
typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3_S2> ProjectionFactorsCreator;
#endif
bool debug = false;
// Write key values to file
void writeValues(string directory_, const Values& values){
string filename = directory_ + "out_camera_poses.txt";
ofstream fout;
fout.open(filename.c_str());
fout.precision(20);
// write out camera poses
BOOST_FOREACH(Values::ConstFiltered<Pose3>::value_type key_value, values.filter<Pose3>()) {
fout << Symbol(key_value.key).index();
const gtsam::Matrix& matrix= key_value.value.matrix();
for (size_t row=0; row < 4; ++row) {
for (size_t col=0; col < 4; ++col) {
fout << " " << matrix(row, col);
}
}
fout << endl;
}
fout.close();
if(values.filter<Point3>().size() > 0) {
// write landmarks
filename = directory_ + "landmarks.txt";
fout.open(filename.c_str());
BOOST_FOREACH(Values::ConstFiltered<Point3>::value_type key_value, values.filter<Point3>()) {
fout << Symbol(key_value.key).index();
fout << " " << key_value.value.x();
fout << " " << key_value.value.y();
fout << " " << key_value.value.z();
fout << endl;
}
fout.close();
} // end of if on landmarks
}
void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr<Ordering> &ordering) {
// Optimization parameters
LevenbergMarquardtParams params;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
params.verbosity = NonlinearOptimizerParams::ERROR;
params.lambdaInitial = 1;
params.lambdaFactor = 10;
// Profile a single iteration
// params.maxIterations = 1;
params.maxIterations = 100;
std::cout << " LM max iterations: " << params.maxIterations << std::endl;
// // params.relativeErrorTol = 1e-5;
params.absoluteErrorTol = 1.0;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
params.verbosity = NonlinearOptimizerParams::ERROR;
params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY;
cout << "Graph size: " << graph.size() << endl;
cout << "Number of variables: " << graphValues->size() << endl;
std::cout << " OPTIMIZATION " << std::endl;
if (debug) {
std::cout << "\n\n=================================================\n\n";
graph.print("thegraph");
}
std::cout << "\n\n=================================================\n\n";
if (ordering && ordering->size() > 0) {
if (debug) {
std::cout << "Have an ordering\n" << std::endl;
BOOST_FOREACH(const Key& key, *ordering) {
std::cout << key << " ";
}
std::cout << std::endl;
}
params.ordering = *ordering;
//for (int i = 0; i < 3; i++) {
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
gttic_(GenericProjectionFactorExample_kitti);
result = optimizer.optimize();
gttoc_(GenericProjectionFactorExample_kitti);
tictoc_finishedIteration_();
//}
} else {
std::cout << "Using COLAMD ordering\n" << std::endl;
//boost::shared_ptr<Ordering> ordering2(new Ordering()); ordering = ordering2;
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
params.ordering = Ordering::COLAMD(graph);
gttic_(SmartProjectionFactorExample_kitti);
result = optimizer.optimize();
gttoc_(SmartProjectionFactorExample_kitti);
tictoc_finishedIteration_();
std::cout << "Number of outer LM iterations: " << optimizer.state().iterations << std::endl;
std::cout << "Total number of LM iterations (inner and outer): " << optimizer.getInnerIterations() << std::endl;
//*ordering = params.ordering;
if (params.ordering) {
std::cout << "Graph size: " << graph.size() << " ORdering: " << params.ordering->size() << std::endl;
ordering = boost::make_shared<Ordering>(*(new Ordering()));
*ordering = *params.ordering;
} else {
std::cout << "WARNING: NULL ordering!" << std::endl;
}
}
}
void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
GaussNewtonParams params;
//params.maxIterations = 1;
params.verbosity = NonlinearOptimizerParams::DELTA;
GaussNewtonOptimizer optimizer(graph, *graphValues, params);
gttic_(SmartProjectionFactorExample_kitti);
result = optimizer.optimize();
gttoc_(SmartProjectionFactorExample_kitti);
tictoc_finishedIteration_();
}
void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
ISAM2 isam;
gttic_(SmartProjectionFactorExample_kitti);
isam.update(graph, *graphValues);
result = isam.calculateEstimate();
gttoc_(SmartProjectionFactorExample_kitti);
tictoc_finishedIteration_();
}
// main
int main(int argc, char** argv) {
// Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used
bool useSmartProjectionFactor = true;
bool doTriangulation = true; // we read points initial guess from file or we triangulate
bool useLM = true;
bool addNoise = false;
// Smart factors settings
double linThreshold = -1.0; // negative is disabled
double rankTolerance = 1.0;
// Get home directory and default dataset
string HOME = getenv("HOME");
string datasetFile = HOME + "/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt";
// --------------- READ USER INPUTS (main arguments) ------------------------------------
if(argc>1){ // if we have any input arguments
// Arg1: "smart" or "standard" (select if to use smart factors or standard projection factors)
// Arg2: "triangulation=0" or "triangulation=1" (select whether to initialize initial guess for points using triangulation)
// Arg3: name of the dataset, e.g., /home/aspn/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt
string useSmartArgument = argv[1];
string useTriangulationArgument = argv[2];
datasetFile = argv[3];
if(useSmartArgument.compare("smart")==0){
useSmartProjectionFactor=true;
} else{
if(useSmartArgument.compare("standard")==0){
useSmartProjectionFactor=false;
}else{
cout << "Selected wrong option for input argument - useSmartProjectionFactor" << endl;
exit(1);
}
}
if(useTriangulationArgument.compare("triangulation=1")==0){
doTriangulation=true;
} else{
if(useTriangulationArgument.compare("triangulation=0")==0){
doTriangulation=false;
}else{
cout << "Selected wrong option for input argument - doTriangulation - not important for SmartFactors" << endl;
}
}
}
// --------------- PRINT USER's CHOICE ------------------------------------
std::cout << "- useSmartFactor: " << useSmartProjectionFactor << std::endl;
std::cout << "- doTriangulation: " << doTriangulation << std::endl;
std::cout << "- datasetFile: " << datasetFile << std::endl;
if (linThreshold >= 0)
std::cout << "PARAM linThreshold (negative is disabled): " << linThreshold << std::endl;
if(addNoise)
std::cout << "PARAM Noise: " << addNoise << std::endl;
// --------------- READ INPUT DATA ----------------------------------------
SfM_data inputData;
readBAL(datasetFile, inputData);
std::cout << "read data from file... " << std::endl;
// --------------- CREATE FACTOR GRAPH ------------------------------------
static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2));
boost::shared_ptr<Ordering> ordering(new Ordering());
NonlinearFactorGraph graphSmart;
gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values());
NonlinearFactorGraph graphProjection;
gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values());
#ifdef USE_BUNDLER
std::vector< boost::shared_ptr<Cal3Bundler> > K_cameras;
boost::shared_ptr<Cal3Bundler> K(new Cal3Bundler());
#else
std::vector< boost::shared_ptr<Cal3_S2> > K_cameras;
Cal3_S2::shared_ptr K(new Cal3_S2());
#endif
SmartFactorsCreator smartCreator(pixel_sigma, K, rankTolerance, linThreshold); // this initial K is not used
ProjectionFactorsCreator projectionCreator(pixel_sigma, K); // this initial K is not used
int numLandmarks=0;
if(debug){
std::cout << "Constructors for factor creators " << std::endl;
std::cout << "inputData.number_cameras() " << inputData.number_cameras() << std::endl;
std::cout << "inputData.number_tracks() " << inputData.number_tracks() << std::endl;
}
// Load graph values
gtsam::Values::shared_ptr loadedValues(new gtsam::Values()); // values we read from file
for (size_t i = 0; i < inputData.number_cameras(); i++){ // for each camera
Pose3 cameraPose = inputData.cameras[i].pose();
if(addNoise){
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3));
cameraPose = cameraPose.compose(noise_pose);
}
loadedValues->insert(X(i), cameraPose);
graphSmartValues->insert(X(i), cameraPose);
}
if(debug) std::cout << "Initialized values " << std::endl;
for (size_t j = 0; j < inputData.number_tracks(); j++){ // for each 3D point
Point3 point = inputData.tracks[j].p;
loadedValues->insert(L(j), point);
}
if(debug) std::cout << "Initialized points " << std::endl;
// Create the graph
for (size_t j = 0; j < inputData.number_tracks(); j++){ // for each 3D point
SfM_Track track = inputData.tracks[j];
Point3 point = track.p;
for (size_t k = 0; k < track.number_measurements(); k++){ // for each measurement of the point
SfM_Measurement measurement = track.measurements[k];
int i = measurement.first;
double u = measurement.second.x();
double v = measurement.second.y();
boost::shared_ptr<Cal3Bundler> Ki(new Cal3Bundler(inputData.cameras[i].calibration()));
//boost::shared_ptr<Cal3_S2> Ki(new Cal3_S2());
// insert data in a format that can be understood
if (useSmartProjectionFactor) {
// Use smart factors
smartCreator.add(L(j), X(i), Point2(u,v), pixel_sigma, Ki, graphSmart);
numLandmarks = smartCreator.getNumLandmarks();
} else {
// or STANDARD PROJECTION FACTORS
projectionCreator.add(L(j), X(i), Point2(u,v), pixel_sigma, Ki, graphProjection);
numLandmarks = projectionCreator.getNumLandmarks();
}
}
}
if(debug) std::cout << "Included measurements in the graph " << std::endl;
cout << "Number of landmarks " << numLandmarks << endl;
cout << "Before call to update: ------------------ " << endl;
cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
Values valuesProjPoses = graphProjectionValues->filter<Pose3>();
cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
Values valuesProjPoints = graphProjectionValues->filter<Point3>();
cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
cout << "---------------------------------------------------------- " << endl;
if (!useSmartProjectionFactor) {
projectionCreator.update(graphProjection, loadedValues, graphProjectionValues, doTriangulation);
// graphProjectionValues = loadedValues;
ordering = projectionCreator.getOrdering();
}
cout << "After call to update: ------------------ " << endl;
cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
valuesProjPoses = graphProjectionValues->filter<Pose3>();
cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
valuesProjPoints = graphProjectionValues->filter<Point3>();
cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
cout << "---------------------------------------------------------- " << endl;
Values result;
if (useSmartProjectionFactor) {
if (useLM)
optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
else
optimizeGraphISAM2(graphSmart, graphSmartValues, result);
cout << "Final reprojection error (smart): " << graphSmart.error(result);
} else {
if (useLM)
optimizeGraphLM(graphProjection, graphProjectionValues, result, ordering);
else
optimizeGraphISAM2(graphProjection, graphProjectionValues, result); // ?
cout << "Final reprojection error (standard): " << graphProjection.error(result);
}
cout << "===================================================" << endl;
tictoc_print_();
cout << "===================================================" << endl;
writeValues("./", result);
exit(0);
}