97 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file UGM_chain.cpp
 | |
|  * @brief UGM (undirected graphical model) examples: chain
 | |
|  * @author Frank Dellaert
 | |
|  * @author Abhijit Kundu
 | |
|  *
 | |
|  * See http://www.di.ens.fr/~mschmidt/Software/UGM/chain.html
 | |
|  * for more explanation. This code demos the same example using GTSAM.
 | |
|  */
 | |
| 
 | |
| #include <gtsam/base/timing.h>
 | |
| #include <gtsam/discrete/DiscreteFactorGraph.h>
 | |
| #include <gtsam/discrete/DiscreteMarginals.h>
 | |
| 
 | |
| #include <iomanip>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char** argv) {
 | |
|   // Set Number of Nodes in the Graph
 | |
|   const int nrNodes = 60;
 | |
| 
 | |
|   // Each node takes 1 of 7 possible states denoted by 0-6 in following order:
 | |
|   // ["VideoGames"  "Industry"  "GradSchool"  "VideoGames(with PhD)"
 | |
|   // "Industry(with PhD)"  "Academia"  "Deceased"]
 | |
|   const size_t nrStates = 7;
 | |
| 
 | |
|   // define variables
 | |
|   vector<DiscreteKey> nodes;
 | |
|   for (int i = 0; i < nrNodes; i++) {
 | |
|     DiscreteKey dk(i, nrStates);
 | |
|     nodes.push_back(dk);
 | |
|   }
 | |
| 
 | |
|   // create graph
 | |
|   DiscreteFactorGraph graph;
 | |
| 
 | |
|   // add node potentials
 | |
|   graph.add(nodes[0], ".3 .6 .1 0 0 0 0");
 | |
|   for (int i = 1; i < nrNodes; i++) graph.add(nodes[i], "1 1 1 1 1 1 1");
 | |
| 
 | |
|   const std::string edgePotential =
 | |
|       ".08 .9 .01 0 0 0 .01 "
 | |
|       ".03 .95 .01 0 0 0 .01 "
 | |
|       ".06 .06 .75 .05 .05 .02 .01 "
 | |
|       "0 0 0 .3 .6 .09 .01 "
 | |
|       "0 0 0 .02 .95 .02 .01 "
 | |
|       "0 0 0 .01 .01 .97 .01 "
 | |
|       "0 0 0 0 0 0 1";
 | |
| 
 | |
|   // add edge potentials
 | |
|   for (int i = 0; i < nrNodes - 1; i++)
 | |
|     graph.add(nodes[i] & nodes[i + 1], edgePotential);
 | |
| 
 | |
|   cout << "Created Factor Graph with " << nrNodes << " variable nodes and "
 | |
|        << graph.size() << " factors (Unary+Edge).";
 | |
| 
 | |
|   // "Decoding", i.e., configuration with largest value
 | |
|   // We use sequential variable elimination
 | |
|   DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
 | |
|   auto optimalDecoding = chordal->optimize();
 | |
|   optimalDecoding.print("\nMost Probable Explanation (optimalDecoding)\n");
 | |
| 
 | |
|   // "Inference" Computing marginals for each node
 | |
|   // Here we'll make use of DiscreteMarginals class, which makes use of
 | |
|   // bayes-tree based shortcut evaluation of marginals
 | |
|   DiscreteMarginals marginals(graph);
 | |
| 
 | |
|   cout << "\nComputing Node Marginals ..(BayesTree based)" << endl;
 | |
|   gttic_(Multifrontal);
 | |
|   for (vector<DiscreteKey>::iterator it = nodes.begin(); it != nodes.end();
 | |
|        ++it) {
 | |
|     // Compute the marginal
 | |
|     Vector margProbs = marginals.marginalProbabilities(*it);
 | |
| 
 | |
|     // Print the marginals
 | |
|     cout << "Node#" << setw(4) << it->first << " :  ";
 | |
|     print(margProbs);
 | |
|   }
 | |
|   gttoc_(Multifrontal);
 | |
| 
 | |
|   tictoc_print_();
 | |
|   return 0;
 | |
| }
 |