402 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			402 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * NoiseModel.h
 | |
|  *
 | |
|  *  Created on: Jan 13, 2010
 | |
|  *      Author: Richard Roberts
 | |
|  *      Author: Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include "Testable.h"
 | |
| #include "Vector.h"
 | |
| #include "Matrix.h"
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	class SharedDiagonal; // forward declare, defined at end
 | |
| 
 | |
| 	namespace noiseModel {
 | |
| 
 | |
| 		/**
 | |
| 		 * noiseModel::Base is the abstract base class for all noise models.
 | |
| 		 *
 | |
| 		 * Noise models must implement a 'whiten' function to normalize an error vector,
 | |
| 		 * and an 'unwhiten' function to unnormalize an error vector.
 | |
| 		 */
 | |
| 		class Base : public Testable<Base> {
 | |
| 
 | |
| 		protected:
 | |
| 
 | |
| 			size_t dim_;
 | |
| 
 | |
| 		public:
 | |
| 
 | |
| 			Base(size_t dim):dim_(dim) {}
 | |
| 			virtual ~Base() {}
 | |
| 
 | |
| 			/**
 | |
| 			 * Dimensionality
 | |
| 			 */
 | |
| 			inline size_t dim() const { return dim_;}
 | |
| 
 | |
| 			/**
 | |
| 			 * Whiten an error vector.
 | |
| 			 */
 | |
| 			virtual Vector whiten(const Vector& v) const = 0;
 | |
| 
 | |
| 			/**
 | |
| 			 * Unwhiten an error vector.
 | |
| 			 */
 | |
| 			virtual Vector unwhiten(const Vector& v) const = 0;
 | |
| 
 | |
| 			/** in-place whiten, override if can be done more efficiently */
 | |
| 			virtual void whitenInPlace(Vector& v) const {
 | |
| 				v = whiten(v);
 | |
| 			}
 | |
| 
 | |
| 			/** in-place unwhiten, override if can be done more efficiently */
 | |
| 			virtual void unwhitenInPlace(Vector& v) const {
 | |
| 				v = unwhiten(v);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		/**
 | |
| 		 * Gaussian implements the mathematical model
 | |
| 		 *  |R*x|^2 = |y|^2 with R'*R=inv(Sigma)
 | |
| 		 * where
 | |
| 		 *   y = whiten(x) = R*x
 | |
| 		 *   x = unwhiten(x) = inv(R)*y
 | |
| 		 * as indeed
 | |
| 		 *   |y|^2 = y'*y = x'*R'*R*x
 | |
| 		 * Various derived classes are available that are more efficient.
 | |
| 		 */
 | |
| 		struct Gaussian: public Base {
 | |
| 
 | |
| 		private:
 | |
| 
 | |
| 			// TODO: store as boost upper-triangular or whatever is passed from above
 | |
| 			/* Matrix square root of information matrix (R) */
 | |
| 			boost::optional<Matrix> sqrt_information_;
 | |
| 
 | |
| 			/**
 | |
| 			 * Return R itself, but note that Whiten(H) is cheaper than R*H
 | |
| 			 */
 | |
| 			const Matrix& thisR() const {
 | |
| 				// should never happen
 | |
| 				if (!sqrt_information_) throw std::runtime_error("Gaussian: has no R matrix");
 | |
| 				return *sqrt_information_;
 | |
| 			}
 | |
| 
 | |
| 		protected:
 | |
| 
 | |
| 			/** protected constructor takes square root information matrix */
 | |
| 			Gaussian(size_t dim, const boost::optional<Matrix>& sqrt_information = boost::none) :
 | |
| 				Base(dim), sqrt_information_(sqrt_information) {
 | |
| 			}
 | |
| 
 | |
| 		public:
 | |
| 
 | |
| 			typedef boost::shared_ptr<Gaussian> shared_ptr;
 | |
| 
 | |
| 			/**
 | |
| 			 * A Gaussian noise model created by specifying a square root information matrix.
 | |
| 			 * @param smart, check if can be simplified to derived class
 | |
| 			 */
 | |
| 			static shared_ptr SqrtInformation(const Matrix& R) {
 | |
| 				return shared_ptr(new Gaussian(R.size1(),R));
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * A Gaussian noise model created by specifying a covariance matrix.
 | |
| 			 * @param smart, check if can be simplified to derived class
 | |
| 			 */
 | |
| 			static shared_ptr Covariance(const Matrix& covariance, bool smart=false);
 | |
| 
 | |
| 			/**
 | |
| 			 * A Gaussian noise model created by specifying an information matrix.
 | |
| 			 */
 | |
| 			static shared_ptr Information(const Matrix& Q)  {
 | |
| 				return shared_ptr(new Gaussian(Q.size1(),square_root_positive(Q)));
 | |
| 			}
 | |
| 
 | |
| 			virtual void print(const std::string& name) const;
 | |
| 			virtual bool equals(const Base& expected, double tol) const;
 | |
| 			virtual Vector whiten(const Vector& v) const;
 | |
| 			virtual Vector unwhiten(const Vector& v) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Mahalanobis distance v'*R'*R*v = <R*v,R*v>
 | |
| 			 */
 | |
| 			virtual double Mahalanobis(const Vector& v) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Multiply a derivative with R (derivative of whiten)
 | |
| 			 * Equivalent to whitening each column of the input matrix.
 | |
| 			 */
 | |
| 			virtual Matrix Whiten(const Matrix& H) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * In-place version
 | |
| 			 */
 | |
| 			virtual void WhitenInPlace(Matrix& H) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Whiten a system, in place as well
 | |
| 			 */
 | |
| 			inline void WhitenSystem(Matrix& A, Vector& b) const {
 | |
| 				WhitenInPlace(A);
 | |
| 				whitenInPlace(b);
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * Apply appropriately weighted QR factorization to the system [A b]
 | |
| 			 *               Q'  *   [A b]  =  [R d]
 | |
| 			 * Dimensions: (r*m) * m*(n+1) = r*(n+1)
 | |
| 			 * @param Ab is the m*(n+1) augmented system matrix [A b]
 | |
| 			 * @return in-place QR factorization [R d]. Below-diagonal is undefined !!!!!
 | |
| 			 */
 | |
| 			virtual SharedDiagonal QR(Matrix& Ab) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Return R itself, but note that Whiten(H) is cheaper than R*H
 | |
| 			 */
 | |
| 			virtual Matrix R() const { return thisR();}
 | |
| 
 | |
| 			/**
 | |
| 			 * Simple check for constrained-ness
 | |
| 			 */
 | |
| 			virtual bool isConstrained() const {return false;}
 | |
| 
 | |
| 		}; // Gaussian
 | |
| 
 | |
| 
 | |
| 		// FD: does not work, ambiguous overload :-(
 | |
| 		// inline Vector operator*(const Gaussian& R, const Vector& v) {return R.whiten(v);}
 | |
| 
 | |
| 		/**
 | |
| 		 * A diagonal noise model implements a diagonal covariance matrix, with the
 | |
| 		 * elements of the diagonal specified in a Vector.  This class has no public
 | |
| 		 * constructors, instead, use the static constructor functions Sigmas etc...
 | |
| 		 */
 | |
| 		class Diagonal : public Gaussian {
 | |
| 		protected:
 | |
| 
 | |
| 			/** sigmas and reciprocal */
 | |
| 			Vector sigmas_, invsigmas_;
 | |
| 
 | |
| 			/** protected constructor takes sigmas */
 | |
| 			Diagonal(const Vector& sigmas);
 | |
| 
 | |
| 		public:
 | |
| 
 | |
| 			typedef boost::shared_ptr<Diagonal> shared_ptr;
 | |
| 
 | |
| 			/**
 | |
| 			 * A diagonal noise model created by specifying a Vector of sigmas, i.e.
 | |
| 			 * standard devations, the diagonal of the square root covariance matrix.
 | |
| 			 */
 | |
| 			static shared_ptr Sigmas(const Vector& sigmas, bool smart=false);
 | |
| 
 | |
| 			/**
 | |
| 			 * A diagonal noise model created by specifying a Vector of variances, i.e.
 | |
| 			 * i.e. the diagonal of the covariance matrix.
 | |
| 			 * @param smart, check if can be simplified to derived class
 | |
| 			 */
 | |
| 			static shared_ptr Variances(const Vector& variances, bool smart = false);
 | |
| 
 | |
| 			/**
 | |
| 			 * A diagonal noise model created by specifying a Vector of precisions, i.e.
 | |
| 			 * i.e. the diagonal of the information matrix, i.e., weights
 | |
| 			 */
 | |
| 			static shared_ptr Precisions(const Vector& precisions) {
 | |
| 				return Variances(reciprocal(precisions));
 | |
| 			}
 | |
| 
 | |
| 			virtual void print(const std::string& name) const;
 | |
| 			virtual Vector whiten(const Vector& v) const;
 | |
| 			virtual Vector unwhiten(const Vector& v) const;
 | |
| 			virtual Matrix Whiten(const Matrix& H) const;
 | |
| 			virtual void WhitenInPlace(Matrix& H) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Return standard deviations (sqrt of diagonal)
 | |
| 			 */
 | |
| 			inline const Vector& sigmas() const { return sigmas_; }
 | |
| 			inline double sigma(size_t i) const { return sigmas_(i); }
 | |
| 
 | |
| 			/**
 | |
| 			 * generate random variate
 | |
| 			 */
 | |
| 			virtual Vector sample() const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Return R itself, but note that Whiten(H) is cheaper than R*H
 | |
| 			 */
 | |
| 			virtual Matrix R() const {
 | |
| 				return diag(invsigmas_);
 | |
| 			}
 | |
| 		}; // Diagonal
 | |
| 
 | |
| 		/**
 | |
| 		 * A Constrained constrained model is a specialization of Diagonal which allows
 | |
| 		 * some or all of the sigmas to be zero, forcing the error to be zero there.
 | |
| 		 * All other Gaussian models are guaranteed to have a non-singular square-root
 | |
| 		 * information matrix, but this class is specifically equipped to deal with
 | |
| 		 * singular noise models, specifically: whiten will return zero on those
 | |
| 		 * components that have zero sigma *and* zero error, infinity otherwise.
 | |
| 		 */
 | |
| 		class Constrained : public Diagonal {
 | |
| 		protected:
 | |
| 
 | |
| 			// Constrained does not have member variables
 | |
| 			// Instead (possibly zero) sigmas are stored in Diagonal Base class
 | |
| 
 | |
| 			/** protected constructor takes sigmas */
 | |
| 			Constrained(const Vector& sigmas) :Diagonal(sigmas) {}
 | |
| 
 | |
| 		public:
 | |
| 
 | |
| 			typedef boost::shared_ptr<Constrained> shared_ptr;
 | |
| 
 | |
| 			/**
 | |
| 			 * A diagonal noise model created by specifying a Vector of
 | |
| 			 * standard devations, some of which might be zero
 | |
| 			 * TODO: make smart - check for zeros
 | |
| 			 */
 | |
| 			static shared_ptr MixedSigmas(const Vector& sigmas, bool smart = false) {
 | |
| 				return shared_ptr(new Constrained(sigmas));
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * A diagonal noise model created by specifying a Vector of
 | |
| 			 * standard devations, some of which might be zero
 | |
| 			 */
 | |
| 			static shared_ptr MixedVariances(const Vector& variances) {
 | |
| 				return shared_ptr(new Constrained(esqrt(variances)));
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * A diagonal noise model created by specifying a Vector of
 | |
| 			 * precisions, some of which might be inf
 | |
| 			 */
 | |
| 			static shared_ptr MixedPrecisions(const Vector& precisions) {
 | |
| 				return MixedVariances(reciprocal(precisions));
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * Fully constrained. TODO: subclass ?
 | |
| 			 */
 | |
| 			static shared_ptr All(size_t dim) {
 | |
| 				return MixedSigmas(repeat(dim,0));
 | |
| 			}
 | |
| 
 | |
| 			virtual void print(const std::string& name) const;
 | |
| 			virtual Vector whiten(const Vector& v) const;
 | |
| 
 | |
| 			// Whitening Jacobians does not make sense for possibly constrained
 | |
| 			// noise model and will throw an exception.
 | |
| 
 | |
| 			virtual Matrix Whiten(const Matrix& H) const;
 | |
| 			virtual void WhitenInPlace(Matrix& H) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Apply QR factorization to the system [A b], taking into account constraints
 | |
| 			 */
 | |
| 			virtual SharedDiagonal QR(Matrix& Ab) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Check constrained is always true
 | |
| 			 */
 | |
| 			virtual bool isConstrained() const {return true;}
 | |
| 
 | |
| 		}; // Constrained
 | |
| 
 | |
| 		/**
 | |
| 		 * An isotropic noise model corresponds to a scaled diagonal covariance
 | |
| 		 * To construct, use one of the static methods
 | |
| 		 */
 | |
| 		class Isotropic : public Diagonal {
 | |
| 		protected:
 | |
| 			double sigma_, invsigma_;
 | |
| 
 | |
| 			/** protected constructor takes sigma */
 | |
| 			Isotropic(size_t dim, double sigma) :
 | |
| 				Diagonal(repeat(dim, sigma)),sigma_(sigma),invsigma_(1.0/sigma) {}
 | |
| 
 | |
| 		public:
 | |
| 
 | |
| 			typedef boost::shared_ptr<Isotropic> shared_ptr;
 | |
| 
 | |
| 			/**
 | |
| 			 * An isotropic noise model created by specifying a standard devation sigma
 | |
| 			 */
 | |
| 			static shared_ptr Sigma(size_t dim, double sigma) {
 | |
| 				return shared_ptr(new Isotropic(dim, sigma));
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * An isotropic noise model created by specifying a variance = sigma^2.
 | |
| 			 * @param smart, check if can be simplified to derived class
 | |
| 			 */
 | |
| 			static shared_ptr Variance(size_t dim, double variance, bool smart = false);
 | |
| 
 | |
| 			/**
 | |
| 			 * An isotropic noise model created by specifying a precision
 | |
| 			 */
 | |
| 			static shared_ptr Precision(size_t dim, double precision)  {
 | |
| 				return Variance(dim, 1.0/precision);
 | |
| 			}
 | |
| 
 | |
| 			virtual void print(const std::string& name) const;
 | |
| 			virtual double Mahalanobis(const Vector& v) const;
 | |
| 			virtual Vector whiten(const Vector& v) const;
 | |
| 			virtual Vector unwhiten(const Vector& v) const;
 | |
| 			virtual Matrix Whiten(const Matrix& H) const;
 | |
| 			virtual void WhitenInPlace(Matrix& H) const;
 | |
| 
 | |
| 			/**
 | |
| 			 * Return standard deviation
 | |
| 			 */
 | |
| 			inline double sigma() const { return sigma_; }
 | |
| 
 | |
| 			/**
 | |
| 			 * generate random variate
 | |
| 			 */
 | |
| 			virtual Vector sample() const;
 | |
| 
 | |
| 		};
 | |
| 
 | |
| 		/**
 | |
| 		 * Unit: i.i.d. unit-variance noise on all m dimensions.
 | |
| 		 */
 | |
| 		class Unit : public Isotropic {
 | |
| 		protected:
 | |
| 
 | |
| 			Unit(size_t dim): Isotropic(dim,1.0) {}
 | |
| 
 | |
| 		public:
 | |
| 
 | |
| 			typedef boost::shared_ptr<Unit> shared_ptr;
 | |
| 
 | |
| 			/**
 | |
| 			 * Create a unit covariance noise model
 | |
| 			 */
 | |
| 			static shared_ptr Create(size_t dim) {
 | |
| 				return shared_ptr(new Unit(dim));
 | |
| 			}
 | |
| 
 | |
| 			virtual void print(const std::string& name) const;
 | |
| 			virtual double Mahalanobis(const Vector& v) const {return inner_prod(v,v); }
 | |
| 			virtual Vector whiten(const Vector& v) const { return v; }
 | |
| 			virtual Vector unwhiten(const Vector& v) const { return v; }
 | |
| 			virtual Matrix Whiten(const Matrix& H) const { return H; }
 | |
| 			virtual void WhitenInPlace(Matrix& H) const {}
 | |
| 		};
 | |
| 
 | |
| 	} // namespace noiseModel
 | |
| 
 | |
| 	using namespace noiseModel;
 | |
| } // namespace gtsam
 |