152 lines
5.1 KiB
C++
152 lines
5.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file KalmanFilter.h
|
|
* @brief Simple linear Kalman filter. Implemented using factor graphs, i.e., does Cholesky-based SRIF, really.
|
|
* @date Sep 3, 2011
|
|
* @author Stephen Williams
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/linear/GaussianDensity.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/NoiseModel.h>
|
|
|
|
#ifndef KALMANFILTER_DEFAULT_FACTORIZATION
|
|
#define KALMANFILTER_DEFAULT_FACTORIZATION QR
|
|
#endif
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Kalman Filter class
|
|
*
|
|
* Knows how to maintain a Gaussian density under linear-Gaussian motion and
|
|
* measurement models. It uses the square-root information form, as usual in GTSAM.
|
|
*
|
|
* The filter is functional, in that it does not have state: you call init() to create
|
|
* an initial state, then predict() and update() that create new states out of an old state.
|
|
*/
|
|
class GTSAM_EXPORT KalmanFilter {
|
|
|
|
public:
|
|
|
|
/**
|
|
* This Kalman filter is a Square-root Information filter
|
|
* The type below allows you to specify the factorization variant.
|
|
*/
|
|
enum Factorization {
|
|
QR, CHOLESKY
|
|
};
|
|
|
|
/**
|
|
* The Kalman filter state is simply a GaussianDensity
|
|
*/
|
|
typedef GaussianDensity::shared_ptr State;
|
|
|
|
private:
|
|
|
|
const size_t n_; /** dimensionality of state */
|
|
const Matrix I_; /** identity matrix of size n*n */
|
|
const GaussianFactorGraph::Eliminate function_; /** algorithm */
|
|
|
|
State solve(const GaussianFactorGraph& factorGraph) const;
|
|
State fuse(const State& p, GaussianFactor::shared_ptr newFactor) const;
|
|
|
|
public:
|
|
|
|
// Constructor
|
|
KalmanFilter(size_t n, Factorization method =
|
|
KALMANFILTER_DEFAULT_FACTORIZATION) :
|
|
n_(n), I_(eye(n_, n_)), function_(
|
|
method == QR ? GaussianFactorGraph::Eliminate(EliminateQR) :
|
|
GaussianFactorGraph::Eliminate(EliminateCholesky)) {
|
|
}
|
|
|
|
/**
|
|
* Create initial state, i.e., prior density at time k=0
|
|
* In Kalman Filter notation, these are x_{0|0} and P_{0|0}
|
|
* @param x0 estimate at time 0
|
|
* @param P0 covariance at time 0, given as a diagonal Gaussian 'model'
|
|
*/
|
|
State init(const Vector& x0, const SharedDiagonal& P0) const;
|
|
|
|
/// version of init with a full covariance matrix
|
|
State init(const Vector& x0, const Matrix& P0) const;
|
|
|
|
/// print
|
|
void print(const std::string& s = "") const;
|
|
|
|
/** Return step index k, starts at 0, incremented at each predict. */
|
|
static Key step(const State& p) {
|
|
return p->firstFrontalKey();
|
|
}
|
|
|
|
/**
|
|
* Predict the state P(x_{t+1}|Z^t)
|
|
* In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
|
|
* Details and parameters:
|
|
* In a linear Kalman Filter, the motion model is f(x_{t}) = F*x_{t} + B*u_{t} + w
|
|
* where F is the state transition model/matrix, B is the control input model,
|
|
* and w is zero-mean, Gaussian white noise with covariance Q.
|
|
*/
|
|
State predict(const State& p, const Matrix& F, const Matrix& B,
|
|
const Vector& u, const SharedDiagonal& modelQ) const;
|
|
|
|
/*
|
|
* Version of predict with full covariance
|
|
* Q is normally derived as G*w*G^T where w models uncertainty of some
|
|
* physical property, such as velocity or acceleration, and G is derived from physics.
|
|
* This version allows more realistic models than a diagonal covariance matrix.
|
|
*/
|
|
State predictQ(const State& p, const Matrix& F, const Matrix& B,
|
|
const Vector& u, const Matrix& Q) const;
|
|
|
|
/**
|
|
* Predict the state P(x_{t+1}|Z^t)
|
|
* In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
|
|
* After the call, that is the density that can be queried.
|
|
* Details and parameters:
|
|
* This version of predict takes GaussianFactor motion model [A0 A1 b]
|
|
* with an optional noise model.
|
|
*/
|
|
State predict2(const State& p, const Matrix& A0, const Matrix& A1,
|
|
const Vector& b, const SharedDiagonal& model) const;
|
|
|
|
/**
|
|
* Update Kalman filter with a measurement
|
|
* For the Kalman Filter, the measurement function, h(x_{t}) = z_{t}
|
|
* will be of the form h(x_{t}) = H*x_{t} + v
|
|
* where H is the observation model/matrix, and v is zero-mean,
|
|
* Gaussian white noise with covariance R.
|
|
* In this version, R is restricted to diagonal Gaussians (model parameter)
|
|
*/
|
|
State update(const State& p, const Matrix& H, const Vector& z,
|
|
const SharedDiagonal& model) const;
|
|
|
|
/*
|
|
* Version of update with full covariance
|
|
* Q is normally derived as G*w*G^T where w models uncertainty of some
|
|
* physical property, such as velocity or acceleration, and G is derived from physics.
|
|
* This version allows more realistic models than a diagonal covariance matrix.
|
|
*/
|
|
State updateQ(const State& p, const Matrix& H, const Vector& z,
|
|
const Matrix& Q) const;
|
|
};
|
|
|
|
} // \namespace gtsam
|
|
|
|
/* ************************************************************************* */
|
|
|