342 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			342 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    NonlinearFactor.h
 | |
|  * @brief   Non-linear factor class
 | |
|  * @author  Frank Dellaert
 | |
|  * @author  Richard Roberts
 | |
|  */
 | |
| 
 | |
| // \callgraph
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <list>
 | |
| #include <limits>
 | |
| 
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include <boost/serialization/base_object.hpp>
 | |
| 
 | |
| #include "Factor.h"
 | |
| #include "Vector.h"
 | |
| #include "Matrix.h"
 | |
| #include "SharedGaussian.h"
 | |
| #include "GaussianFactor.h"
 | |
| 
 | |
| #define INSTANTIATE_NONLINEAR_FACTOR1(C,J,X) \
 | |
|   template class gtsam::NonlinearFactor1<C,J,X>;
 | |
| #define INSTANTIATE_NONLINEAR_FACTOR2(C,J1,X1,J2,X2) \
 | |
|     template class gtsam::NonlinearFactor2<C,J1,X1,J2,X2>;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	/**
 | |
| 	 * Nonlinear factor which assumes zero-mean Gaussian noise on the
 | |
| 	 * on a measurement predicted by a non-linear function h.
 | |
| 	 *
 | |
| 	 * Templated on a configuration type. The configurations are typically
 | |
| 	 * more general than just vectors, e.g., Rot3 or Pose3,
 | |
| 	 * which are objects in non-linear manifolds (Lie groups).
 | |
| 	 */
 | |
| 	template<class Config>
 | |
| 	class NonlinearFactor: public Factor<Config> {
 | |
| 
 | |
| 	protected:
 | |
| 
 | |
| 		typedef NonlinearFactor<Config> This;
 | |
| 
 | |
| 		SharedGaussian noiseModel_; /** Noise model */
 | |
| 		std::list<Symbol> keys_; /** cached keys */
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		/** Default constructor for I/O only */
 | |
| 		NonlinearFactor() {
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 *  Constructor
 | |
| 		 *  @param noiseModel shared pointer to a noise model
 | |
| 		 */
 | |
| 		NonlinearFactor(const SharedGaussian& noiseModel) :
 | |
| 			noiseModel_(noiseModel) {
 | |
| 		}
 | |
| 
 | |
| 		/** print */
 | |
| 		void print(const std::string& s = "") const {
 | |
| 			std::cout << "NonlinearFactor " << s << std::endl;
 | |
| 			noiseModel_->print("noise model");
 | |
| 		}
 | |
| 
 | |
| 		/** Check if two NonlinearFactor objects are equal */
 | |
| 		bool equals(const Factor<Config>& f, double tol = 1e-9) const {
 | |
| 			const This* p = dynamic_cast<const NonlinearFactor<Config>*> (&f);
 | |
| 			if (p == NULL) return false;
 | |
| 			return noiseModel_->equals(*p->noiseModel_, tol);
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 * calculate the error of the factor
 | |
| 		 */
 | |
| 		double error(const Config& c) const {
 | |
| 			return 0.5 * noiseModel_->Mahalanobis(unwhitenedError(c));
 | |
| 		}
 | |
| 
 | |
| 		/** return keys */
 | |
| 		std::list<Symbol> keys() const {
 | |
| 			return keys_;
 | |
| 		}
 | |
| 
 | |
| 		/** access to the noise model */
 | |
| 		SharedGaussian get_noiseModel() const {
 | |
| 			return noiseModel_;
 | |
| 		}
 | |
| 
 | |
| 		/** get the size of the factor */
 | |
| 		std::size_t size() const {
 | |
| 			return keys_.size();
 | |
| 		}
 | |
| 
 | |
| 		/** Vector of errors, unwhitened ! */
 | |
| 		virtual Vector unwhitenedError(const Config& c) const = 0;
 | |
| 
 | |
| 		/** Vector of errors, whitened ! */
 | |
| 		Vector whitenedError(const Config& c) const {
 | |
| 			return noiseModel_->whiten(unwhitenedError(c));
 | |
| 		}
 | |
| 
 | |
| 		/** linearize to a GaussianFactor */
 | |
| 		virtual boost::shared_ptr<GaussianFactor>
 | |
| 		linearize(const Config& c) const = 0;
 | |
| 
 | |
| 	private:
 | |
| 
 | |
| 		/** Serialization function */
 | |
| 		friend class boost::serialization::access;
 | |
| 		template<class Archive>
 | |
| 		void serialize(Archive & ar, const unsigned int version) {
 | |
| 			// TODO NoiseModel
 | |
| 		}
 | |
| 
 | |
| 	}; // NonlinearFactor
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * A Gaussian nonlinear factor that takes 1 parameter
 | |
| 	 * implementing the density P(z|x) \propto exp -0.5*|z-h(x)|^2_C
 | |
| 	 * Templated on the parameter type X and the configuration Config
 | |
| 	 * There is no return type specified for h(x). Instead, we require
 | |
| 	 * the derived class implements error_vector(c) = h(x)-z \approx Ax-b
 | |
| 	 * This allows a graph to have factors with measurements of mixed type.
 | |
| 	 */
 | |
| 	template<class Config, class Key, class X>
 | |
| 	class NonlinearFactor1: public NonlinearFactor<Config> {
 | |
| 
 | |
| 	protected:
 | |
| 
 | |
| 		// The value of the key. Not const to allow serialization
 | |
| 		Key key_;
 | |
| 
 | |
| 		typedef NonlinearFactor<Config> Base;
 | |
| 		typedef NonlinearFactor1<Config, Key, X> This;
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		/** Default constructor for I/O only */
 | |
| 		NonlinearFactor1() {
 | |
| 		}
 | |
| 
 | |
| 		inline const Key& key() const {
 | |
| 			return key_;
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 *  Constructor
 | |
| 		 *  @param z measurement
 | |
| 		 *  @param key by which to look up X value in Config
 | |
| 		 */
 | |
| 		NonlinearFactor1(const SharedGaussian& noiseModel,
 | |
| 				const Key& key1) :
 | |
| 			Base(noiseModel), key_(key1) {
 | |
| 			this->keys_.push_back(key_);
 | |
| 		}
 | |
| 
 | |
| 		/* print */
 | |
| 		void print(const std::string& s = "") const {
 | |
| 			std::cout << "NonlinearFactor1 " << s << std::endl;
 | |
| 			std::cout << "key: " << (std::string) key_ << std::endl;
 | |
| 			Base::print("parent");
 | |
| 		}
 | |
| 
 | |
| 		/** Check if two factors are equal. Note type is Factor and needs cast. */
 | |
| 		bool equals(const Factor<Config>& f, double tol = 1e-9) const {
 | |
| 			const This* p = dynamic_cast<const This*> (&f);
 | |
| 			if (p == NULL) return false;
 | |
| 			return Base::equals(*p, tol) && (key_ == p->key_);
 | |
| 		}
 | |
| 
 | |
| 		/** error function h(x)-z, unwhitened !!! */
 | |
| 		inline Vector unwhitenedError(const Config& x) const {
 | |
| 			const Key& j = key_;
 | |
| 			const X& xj = x[j];
 | |
| 			return evaluateError(xj);
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 * Linearize a non-linearFactor1 to get a GaussianFactor
 | |
| 		 * Ax-b \approx h(x0+dx)-z = h(x0) + A*dx - z
 | |
| 		 * Hence b = z - h(x0) = - error_vector(x)
 | |
| 		 */
 | |
| 		virtual boost::shared_ptr<GaussianFactor> linearize(const Config& x) const {
 | |
| 			const X& xj = x[key_];
 | |
| 			Matrix A;
 | |
| 			Vector b = - evaluateError(xj, A);
 | |
| 			// TODO pass unwhitened + noise model to Gaussian factor
 | |
| 			SharedDiagonal constrained =
 | |
| 					boost::shared_dynamic_cast<noiseModel::Constrained>(this->noiseModel_);
 | |
| 			if (constrained.get() != NULL) {
 | |
| 				return GaussianFactor::shared_ptr(new GaussianFactor(key_, A, b, constrained));
 | |
| 			}
 | |
| 			this->noiseModel_->WhitenInPlace(A);
 | |
| 			this->noiseModel_->whitenInPlace(b);
 | |
| 			return GaussianFactor::shared_ptr(new GaussianFactor(key_, A, b,
 | |
| 					noiseModel::Unit::Create(b.size())));
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 *  Override this method to finish implementing a unary factor.
 | |
| 		 *  If the optional Matrix reference argument is specified, it should compute
 | |
| 		 *  both the function evaluation and its derivative in X.
 | |
| 		 */
 | |
| 		virtual Vector evaluateError(const X& x, boost::optional<Matrix&> H =
 | |
| 				boost::none) const = 0;
 | |
| 
 | |
| 	private:
 | |
| 
 | |
| 		/** Serialization function */
 | |
| 		friend class boost::serialization::access;
 | |
| 		template<class Archive>
 | |
| 		void serialize(Archive & ar, const unsigned int version) {
 | |
| 			ar & boost::serialization::make_nvp("NonlinearFactor",
 | |
| 					boost::serialization::base_object<NonlinearFactor>(*this));
 | |
| 			ar & BOOST_SERIALIZATION_NVP(key_);
 | |
| 		}
 | |
| 
 | |
| 	};
 | |
| 
 | |
| 	/**
 | |
| 	 * A Gaussian nonlinear factor that takes 2 parameters
 | |
| 	 * Note: cannot be serialized as contains function pointers
 | |
| 	 * Specialized derived classes could do this
 | |
| 	 */
 | |
| 	template<class Config, class Key1, class X1, class Key2, class X2>
 | |
| 	class NonlinearFactor2: public NonlinearFactor<Config> {
 | |
| 
 | |
| 	protected:
 | |
| 
 | |
| 		// The values of the keys. Not const to allow serialization
 | |
| 		Key1 key1_;
 | |
| 		Key2 key2_;
 | |
| 
 | |
| 		typedef NonlinearFactor<Config> Base;
 | |
| 		typedef NonlinearFactor2<Config, Key1, X1, Key2, X2> This;
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		/**
 | |
| 		 * Default Constructor for I/O
 | |
| 		 */
 | |
| 		NonlinearFactor2() {
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 * Constructor
 | |
| 		 * @param j1 key of the first variable
 | |
| 		 * @param j2 key of the second variable
 | |
| 		 */
 | |
| 		NonlinearFactor2(const SharedGaussian& noiseModel, Key1 j1,
 | |
| 				Key2 j2) :
 | |
| 			Base(noiseModel), key1_(j1), key2_(j2) {
 | |
| 			this->keys_.push_back(key1_);
 | |
| 			this->keys_.push_back(key2_);
 | |
| 		}
 | |
| 
 | |
| 		/** Print */
 | |
| 		void print(const std::string& s = "") const {
 | |
| 			std::cout << "NonlinearFactor2 " << s << std::endl;
 | |
| 			std::cout << "key1: " << (std::string) key1_ << std::endl;
 | |
| 			std::cout << "key2: " << (std::string) key2_ << std::endl;
 | |
| 			Base::print("parent");
 | |
| 		}
 | |
| 
 | |
| 		/** Check if two factors are equal */
 | |
| 		bool equals(const Factor<Config>& f, double tol = 1e-9) const {
 | |
| 			const This* p = dynamic_cast<const This*> (&f);
 | |
| 			if (p == NULL) return false;
 | |
| 			return Base::equals(*p, tol) && (key1_ == p->key1_)
 | |
| 					&& (key2_ == p->key2_);
 | |
| 		}
 | |
| 
 | |
| 		/** error function z-h(x1,x2) */
 | |
| 		inline Vector unwhitenedError(const Config& x) const {
 | |
| 			const X1& x1 = x[key1_];
 | |
| 			const X2& x2 = x[key2_];
 | |
| 			return evaluateError(x1, x2);
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 * Linearize a non-linearFactor1 to get a GaussianFactor
 | |
| 		 * Ax-b \approx h(x1+dx1,x2+dx2)-z = h(x1,x2) + A2*dx1 + A2*dx2 - z
 | |
| 		 * Hence b = z - h(x1,x2) = - error_vector(x)
 | |
| 		 */
 | |
| 		boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
 | |
| 			const X1& x1 = c[key1_];
 | |
| 			const X2& x2 = c[key2_];
 | |
| 			Matrix A1, A2;
 | |
| 			Vector b = -evaluateError(x1, x2, A1, A2);
 | |
| 			// TODO pass unwhitened + noise model to Gaussian factor
 | |
| 			SharedDiagonal constrained =
 | |
| 					boost::shared_dynamic_cast<noiseModel::Constrained>(this->noiseModel_);
 | |
| 			if (constrained.get() != NULL) {
 | |
| 				return GaussianFactor::shared_ptr(new GaussianFactor(key1_, A1, key2_,
 | |
| 						A2, b, constrained));
 | |
| 			}
 | |
| 			this->noiseModel_->WhitenInPlace(A1);
 | |
| 			this->noiseModel_->WhitenInPlace(A2);
 | |
| 			this->noiseModel_->whitenInPlace(b);
 | |
| 			return GaussianFactor::shared_ptr(new GaussianFactor(key1_, A1, key2_,
 | |
| 					A2, b, noiseModel::Unit::Create(b.size())));
 | |
| 		}
 | |
| 
 | |
| 		/** methods to retrieve both keys */
 | |
| 		inline const Key1& key1() const {
 | |
| 			return key1_;
 | |
| 		}
 | |
| 		inline const Key2& key2() const {
 | |
| 			return key2_;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 *  Override this method to finish implementing a binary factor.
 | |
| 		 *  If any of the optional Matrix reference arguments are specified, it should compute
 | |
| 		 *  both the function evaluation and its derivative(s) in X1 (and/or X2).
 | |
| 		 */
 | |
| 		virtual Vector
 | |
| 		evaluateError(const X1&, const X2&, boost::optional<Matrix&> H1 =
 | |
| 				boost::none, boost::optional<Matrix&> H2 = boost::none) const = 0;
 | |
| 
 | |
| 	private:
 | |
| 
 | |
| 		/** Serialization function */
 | |
| 		friend class boost::serialization::access;
 | |
| 		template<class Archive>
 | |
| 		void serialize(Archive & ar, const unsigned int version) {
 | |
| 			ar & boost::serialization::make_nvp("NonlinearFactor",
 | |
| 					boost::serialization::base_object<NonlinearFactor>(*this));
 | |
| 			ar & BOOST_SERIALIZATION_NVP(key1_);
 | |
| 			ar & BOOST_SERIALIZATION_NVP(key2_);
 | |
| 		}
 | |
| 
 | |
| 	};
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| }
 |