69 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
"""
 | 
						|
A simple 2D pose slam example with "GPS" measurements
 | 
						|
  - The robot moves forward 2 meter each iteration
 | 
						|
  - The robot initially faces along the X axis (horizontal, to the right in 2D)
 | 
						|
  - We have full odometry between pose
 | 
						|
  - We have "GPS-like" measurements implemented with a custom factor
 | 
						|
"""
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import gtsam
 | 
						|
from gtsam import BetweenFactorPose2, Pose2, noiseModel
 | 
						|
from gtsam_unstable import PartialPriorFactorPose2
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    # 1. Create a factor graph container and add factors to it.
 | 
						|
    graph = gtsam.NonlinearFactorGraph()
 | 
						|
 | 
						|
    # 2a. Add odometry factors
 | 
						|
    # For simplicity, we will use the same noise model for each odometry factor
 | 
						|
    odometryNoise = noiseModel.Diagonal.Sigmas(np.asarray([0.2, 0.2, 0.1]))
 | 
						|
 | 
						|
    # Create odometry (Between) factors between consecutive poses
 | 
						|
    graph.push_back(
 | 
						|
        BetweenFactorPose2(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise))
 | 
						|
    graph.push_back(
 | 
						|
        BetweenFactorPose2(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise))
 | 
						|
 | 
						|
    # 2b. Add "GPS-like" measurements
 | 
						|
    # We will use PartialPrior factor for this.
 | 
						|
    unaryNoise = noiseModel.Diagonal.Sigmas(np.array([0.1,
 | 
						|
                                                      0.1]))  # 10cm std on x,y
 | 
						|
 | 
						|
    graph.push_back(
 | 
						|
        PartialPriorFactorPose2(1, [0, 1], np.asarray([0.0, 0.0]), unaryNoise))
 | 
						|
    graph.push_back(
 | 
						|
        PartialPriorFactorPose2(2, [0, 1], np.asarray([2.0, 0.0]), unaryNoise))
 | 
						|
    graph.push_back(
 | 
						|
        PartialPriorFactorPose2(3, [0, 1], np.asarray([4.0, 0.0]), unaryNoise))
 | 
						|
    graph.print("\nFactor Graph:\n")
 | 
						|
 | 
						|
    # 3. Create the data structure to hold the initialEstimate estimate to the solution
 | 
						|
    # For illustrative purposes, these have been deliberately set to incorrect values
 | 
						|
    initialEstimate = gtsam.Values()
 | 
						|
    initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2))
 | 
						|
    initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2))
 | 
						|
    initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1))
 | 
						|
    initialEstimate.print("\nInitial Estimate:\n")
 | 
						|
 | 
						|
    # 4. Optimize using Levenberg-Marquardt optimization. The optimizer
 | 
						|
    # accepts an optional set of configuration parameters, controlling
 | 
						|
    # things like convergence criteria, the type of linear system solver
 | 
						|
    # to use, and the amount of information displayed during optimization.
 | 
						|
    # Here we will use the default set of parameters.  See the
 | 
						|
    # documentation for the full set of parameters.
 | 
						|
    optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
 | 
						|
    result = optimizer.optimize()
 | 
						|
    result.print("Final Result:\n")
 | 
						|
 | 
						|
    # 5. Calculate and print marginal covariances for all variables
 | 
						|
    marginals = gtsam.Marginals(graph, result)
 | 
						|
    print("x1 covariance:\n", marginals.marginalCovariance(1))
 | 
						|
    print("x2 covariance:\n", marginals.marginalCovariance(2))
 | 
						|
    print("x3 covariance:\n", marginals.marginalCovariance(3))
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |