65 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Simple 2D robotics example using the SimpleSPCGSolver
 | |
| % @author Yong-Dian Jian
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| import gtsam.*
 | |
| 
 | |
| %% Assumptions
 | |
| %  - All values are axis aligned
 | |
| %  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | |
| %  - We have full odometry for measurements
 | |
| %  - The robot is on a grid, moving 2 meters each step
 | |
| 
 | |
| %% Create graph container and add factors to it
 | |
| graph = NonlinearFactorGraph;
 | |
| 
 | |
| %% Add prior
 | |
| % gaussian for prior
 | |
| priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
 | |
| priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
 | |
| graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
 | |
| 
 | |
| %% Add odometry
 | |
| % general noisemodel for odometry
 | |
| odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
 | |
| graph.add(BetweenFactorPose2(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise));
 | |
| graph.add(BetweenFactorPose2(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise));
 | |
| graph.add(BetweenFactorPose2(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise));
 | |
| graph.add(BetweenFactorPose2(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise));
 | |
| 
 | |
| %% Add pose constraint
 | |
| model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
 | |
| graph.add(BetweenFactorPose2(5, 2, Pose2(2.0, 0.0, pi/2), model));
 | |
| 
 | |
| % print
 | |
| graph.print(sprintf('\nFactor graph:\n'));
 | |
| 
 | |
| %% Initialize to noisy points
 | |
| initialEstimate = Values;
 | |
| initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 ));
 | |
| initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2 ));
 | |
| initialEstimate.insert(3, Pose2(4.1, 0.1, pi/2));
 | |
| initialEstimate.insert(4, Pose2(4.0, 2.0, pi  ));
 | |
| initialEstimate.insert(5, Pose2(2.1, 2.1,-pi/2));
 | |
| initialEstimate.print(sprintf('\nInitial estimate:\n'));
 | |
| 
 | |
| %% Optimize using Levenberg-Marquardt optimization with SubgraphSolver
 | |
| params = gtsam.LevenbergMarquardtParams;
 | |
| subgraphParams = gtsam.SubgraphSolverParameters;
 | |
| params.setLinearSolverType('CONJUGATE_GRADIENT');
 | |
| params.setIterativeParams(subgraphParams);
 | |
| optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate);
 | |
| result = optimizer.optimize();
 | |
| result.print(sprintf('\nFinal result:\n'));
 | |
| 
 | |
| 
 | |
| 
 |