102 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Matlab
		
	
	
function [pts2dTracksStereo, initialEstimate] = points2DTrackStereo(K, cameraPoses, options, cylinders)
 | 
						|
% Assess how accurately we can reconstruct points from a particular monocular camera setup. 
 | 
						|
% After creation of the factor graph for each track, linearize it around ground truth. 
 | 
						|
% There is no optimization
 | 
						|
%
 | 
						|
% @author: Zhaoyang Lv
 | 
						|
 | 
						|
import gtsam.*
 | 
						|
 | 
						|
%% create graph
 | 
						|
graph = NonlinearFactorGraph;
 | 
						|
 | 
						|
%% create the noise factors
 | 
						|
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
 | 
						|
posePriorNoise  = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
 | 
						|
stereoNoise = noiseModel.Isotropic.Sigma(3, 0.05);
 | 
						|
 | 
						|
cameraPosesNum = length(cameraPoses);
 | 
						|
 | 
						|
%% add measurements and initial camera & points values
 | 
						|
pointsNum = 0;
 | 
						|
cylinderNum = length(cylinders);
 | 
						|
points3d = cell(0);
 | 
						|
for i = 1:cylinderNum
 | 
						|
    cylinderPointsNum = length(cylinders{i}.Points);
 | 
						|
    pointsNum = pointsNum + length(cylinders{i}.Points);
 | 
						|
    for j = 1:cylinderPointsNum
 | 
						|
        points3d{end+1}.data = cylinders{i}.Points{j};
 | 
						|
        points3d{end}.Z = cell(0);
 | 
						|
        points3d{end}.cameraConstraint = cell(0);
 | 
						|
        points3d{end}.visiblity = false;
 | 
						|
        points3d{end}.cov = cell(cameraPosesNum);
 | 
						|
    end
 | 
						|
end
 | 
						|
 | 
						|
graph.add(PriorFactorPose3(symbol('x', 1), cameraPoses{1}, posePriorNoise));
 | 
						|
 | 
						|
%% initialize graph and values
 | 
						|
initialEstimate = Values;
 | 
						|
for i = 1:pointsNum
 | 
						|
    point_j = points3d{i}.data.retract(0.05*randn(3,1));
 | 
						|
    initialEstimate.insert(symbol('p', i), point_j);    
 | 
						|
end
 | 
						|
 | 
						|
pts3d = cell(cameraPosesNum, 1);
 | 
						|
cameraPosesCov = cell(cameraPosesNum, 1);
 | 
						|
for i = 1:cameraPosesNum 
 | 
						|
    pts3d{i} = cylinderSampleProjectionStereo(K, cameraPoses{i}, options.camera.resolution, cylinders);
 | 
						|
    
 | 
						|
    if isempty(pts3d{i}.Z)
 | 
						|
        continue;
 | 
						|
    end
 | 
						|
    
 | 
						|
    measurementNum = length(pts3d{i}.Z);
 | 
						|
    for j = 1:measurementNum
 | 
						|
        index = pts3d{i}.overallIdx{j};
 | 
						|
        points3d{index}.Z{end+1} = pts3d{i}.Z{j};
 | 
						|
        points3d{index}.cameraConstraint{end+1} = i;
 | 
						|
        points3d{index}.visiblity = true;
 | 
						|
  
 | 
						|
        graph.add(GenericStereoFactor3D(StereoPoint2(pts3d{i}.Z{j}.uL, pts3d{i}.Z{j}.uR, pts3d{i}.Z{j}.v), ...
 | 
						|
            stereoNoise, symbol('x', i), symbol('p', index), K));    
 | 
						|
    end
 | 
						|
 | 
						|
    pose_i = cameraPoses{i}.retract(poseNoiseSigmas);
 | 
						|
    initialEstimate.insert(symbol('x', i), pose_i);
 | 
						|
 | 
						|
    %% linearize the graph
 | 
						|
    marginals = Marginals(graph, initialEstimate);
 | 
						|
 | 
						|
    for j = 1:pointsNum
 | 
						|
        if points3d{j}.visiblity
 | 
						|
            points3d{j}.cov{i} = marginals.marginalCovariance(symbol('p', j));
 | 
						|
        end       
 | 
						|
    end
 | 
						|
    
 | 
						|
    cameraPosesCov{i} = marginals.marginalCovariance(symbol('x', i));    
 | 
						|
end
 | 
						|
 | 
						|
%% Plot the result
 | 
						|
plotFlyingResults(points3d, cameraPoses, cameraPosesCov, cylinders, options);
 | 
						|
 | 
						|
%% get all the 2d points track information
 | 
						|
pts2dTracksStereo.pt3d = cell(0);
 | 
						|
pts2dTracksStereo.Z = cell(0);
 | 
						|
pts2dTracksStereo.cov = cell(0);
 | 
						|
for i = 1:pointsNum
 | 
						|
    if ~points3d{i}.visiblity
 | 
						|
        continue;
 | 
						|
    end
 | 
						|
    
 | 
						|
    pts2dTracksStereo.pt3d{end+1} = points3d{i}.data;
 | 
						|
    pts2dTracksStereo.Z{end+1} = points3d{i}.Z;
 | 
						|
    pts2dTracksStereo.cov{end+1} = marginals.marginalCovariance(symbol('p', i));       
 | 
						|
end
 | 
						|
 | 
						|
% 
 | 
						|
% %% plot the result with covariance ellipses
 | 
						|
% plotFlyingResults(pts2dTracksStereo.pt3d, pts2dTracksStereo.cov, cameraPoses, cameraPosesCov, cylinders, options);
 | 
						|
 | 
						|
end
 |