216 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    QPSolver.cpp
 | |
|  * @brief
 | |
|  * @date    Apr 15, 2014
 | |
|  * @author  Duy-Nguyen Ta
 | |
|  */
 | |
| 
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/inference/FactorGraph-inst.h>
 | |
| #include <gtsam_unstable/linear/QPSolver.h>
 | |
| #include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | |
| #include <boost/range/adaptor/map.hpp>
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| //******************************************************************************
 | |
| QPSolver::QPSolver(const QP& qp) :
 | |
|     qp_(qp) {
 | |
|   baseGraph_ = qp_.cost;
 | |
|   baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end());
 | |
|   costVariableIndex_ = VariableIndex(qp_.cost);
 | |
|   equalityVariableIndex_ = VariableIndex(qp_.equalities);
 | |
|   inequalityVariableIndex_ = VariableIndex(qp_.inequalities);
 | |
|   constrainedKeys_ = qp_.equalities.keys();
 | |
|   constrainedKeys_.merge(qp_.inequalities.keys());
 | |
| }
 | |
| 
 | |
| //***************************************************cc***************************
 | |
| VectorValues QPSolver::solveWithCurrentWorkingSet(
 | |
|     const InequalityFactorGraph& workingSet) const {
 | |
|   GaussianFactorGraph workingGraph = baseGraph_;
 | |
|   BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
 | |
|     if (factor->active())
 | |
|     workingGraph.push_back(factor);
 | |
|   }
 | |
|   return workingGraph.optimize();
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key,
 | |
|     const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
 | |
| 
 | |
|   // Transpose the A matrix of constrained factors to have the jacobian of the dual key
 | |
|   std::vector < std::pair<Key, Matrix> > Aterms = collectDualJacobians
 | |
|       < LinearEquality > (key, qp_.equalities, equalityVariableIndex_);
 | |
|   std::vector < std::pair<Key, Matrix> > AtermsInequalities =
 | |
|       collectDualJacobians < LinearInequality
 | |
|           > (key, workingSet, inequalityVariableIndex_);
 | |
|   Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
 | |
|       AtermsInequalities.end());
 | |
| 
 | |
|   // Collect the gradients of unconstrained cost factors to the b vector
 | |
|   if (Aterms.size() > 0) {
 | |
|     Vector b = zero(delta.at(key).size());
 | |
|     if (costVariableIndex_.find(key) != costVariableIndex_.end()) {
 | |
|     BOOST_FOREACH(size_t factorIx, costVariableIndex_[key]) {
 | |
|       GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
 | |
|       b += factor->gradient(key, delta);
 | |
|     }
 | |
|   }
 | |
|   return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
 | |
| } else {
 | |
|   return boost::make_shared<JacobianFactor>();
 | |
| }
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| /* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
 | |
|  * If some inactive inequality constraints complain about the full step (alpha = 1),
 | |
|  * we have to adjust alpha to stay within the inequality constraints' feasible regions.
 | |
|  *
 | |
|  * For each inactive inequality j:
 | |
|  *  - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
 | |
|  *  - We want: aj'*(xk + alpha*p) - bj <= 0
 | |
|  *  - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
 | |
|  *  it's good!
 | |
|  *  - We only care when aj'*p > 0. In this case, we need to choose alpha so that
 | |
|  *  aj'*xk + alpha*aj'*p - bj <= 0  --> alpha <= (bj - aj'*xk) / (aj'*p)
 | |
|  *  We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
 | |
|  *
 | |
|  * We want the minimum of all those alphas among all inactive inequality.
 | |
|  */
 | |
| boost::tuple<double, int> QPSolver::computeStepSize(
 | |
|   const InequalityFactorGraph& workingSet, const VectorValues& xk,
 | |
|   const VectorValues& p) const {
 | |
| return ActiveSetSolver::computeStepSize(workingSet, xk, p, 1);
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| QPState QPSolver::iterate(const QPState& state) const {
 | |
| static bool debug = false;
 | |
| 
 | |
| // Algorithm 16.3 from Nocedal06book.
 | |
| // Solve with the current working set eqn 16.39, but instead of solving for p solve for x
 | |
| VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
 | |
| if (debug)
 | |
|   newValues.print("New solution:");
 | |
| 
 | |
| // If we CAN'T move further
 | |
| // if p_k = 0 is the original condition, modified by Duy to say that the state update is zero.
 | |
| if (newValues.equals(state.values, 1e-7)) {
 | |
|   // Compute lambda from the dual graph
 | |
|   if (debug)
 | |
|     cout << "Building dual graph..." << endl;
 | |
|   GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
 | |
|       newValues);
 | |
|   if (debug)
 | |
|     dualGraph->print("Dual graph: ");
 | |
|   VectorValues duals = dualGraph->optimize();
 | |
|   if (debug)
 | |
|     duals.print("Duals :");
 | |
| 
 | |
|   int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
 | |
|   if (debug)
 | |
|     cout << "leavingFactor: " << leavingFactor << endl;
 | |
| 
 | |
|   // If all inequality constraints are satisfied: We have the solution!!
 | |
|   if (leavingFactor < 0) {
 | |
|     return QPState(newValues, duals, state.workingSet, true,
 | |
|         state.iterations + 1);
 | |
|   } else {
 | |
|     // Inactivate the leaving constraint
 | |
|     InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|     newWorkingSet.at(leavingFactor)->inactivate();
 | |
|     return QPState(newValues, duals, newWorkingSet, false, state.iterations + 1);
 | |
|   }
 | |
| } else {
 | |
|   // If we CAN make some progress, i.e. p_k != 0
 | |
|   // Adapt stepsize if some inactive constraints complain about this move
 | |
|   double alpha;
 | |
|   int factorIx;
 | |
|   VectorValues p = newValues - state.values;
 | |
|   boost::tie(alpha, factorIx) = // using 16.41
 | |
|       computeStepSize(state.workingSet, state.values, p);
 | |
|   if (debug)
 | |
|     cout << "alpha, factorIx: " << alpha << " " << factorIx << " " << endl;
 | |
| 
 | |
|   // also add to the working set the one that complains the most
 | |
|   InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|   if (factorIx >= 0)
 | |
|     newWorkingSet.at(factorIx)->activate();
 | |
| 
 | |
|   // step!
 | |
|   newValues = state.values + alpha * p;
 | |
| 
 | |
|   return QPState(newValues, state.duals, newWorkingSet, false,
 | |
|       state.iterations + 1);
 | |
| }
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| InequalityFactorGraph QPSolver::identifyActiveConstraints(
 | |
|   const InequalityFactorGraph& inequalities, const VectorValues& initialValues,
 | |
|   const VectorValues& duals, bool useWarmStart) const {
 | |
| InequalityFactorGraph workingSet;
 | |
| BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
 | |
|   LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
 | |
|   if (useWarmStart == true && duals.exists(workingFactor->dualKey())) {
 | |
|     workingFactor->activate();
 | |
|   }
 | |
|   else {
 | |
|     if (useWarmStart == true && duals.size() > 0) {
 | |
|       workingFactor->inactivate();
 | |
|     } else {
 | |
|       double error = workingFactor->error(initialValues);
 | |
|       // TODO: find a feasible initial point for QPSolver.
 | |
|       // For now, we just throw an exception, since we don't have an LPSolver to do this yet
 | |
|       if (error > 0)
 | |
|       throw InfeasibleInitialValues();
 | |
| 
 | |
|       if (fabs(error)<1e-7) {
 | |
|         workingFactor->activate();
 | |
|       }
 | |
|       else {
 | |
|         workingFactor->inactivate();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   workingSet.push_back(workingFactor);
 | |
| }
 | |
| return workingSet;
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| pair<VectorValues, VectorValues> QPSolver::optimize(
 | |
|   const VectorValues& initialValues, const VectorValues& duals,
 | |
|   bool useWarmStart) const {
 | |
| 
 | |
| // Initialize workingSet from the feasible initialValues
 | |
| InequalityFactorGraph workingSet = identifyActiveConstraints(qp_.inequalities,
 | |
|     initialValues, duals, useWarmStart);
 | |
| QPState state(initialValues, duals, workingSet, false, 0);
 | |
| 
 | |
| /// main loop of the solver
 | |
| while (!state.converged) {
 | |
|   state = iterate(state);
 | |
| }
 | |
| 
 | |
| return make_pair(state.values, state.duals);
 | |
| }
 | |
| 
 | |
| } /* namespace gtsam */
 |