247 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    Rot3.cpp
 | |
|  * @brief   Rotation (internal: 3*3 matrix representation*)
 | |
|  * @author  Alireza Fathi
 | |
|  * @author  Christian Potthast
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include "Rot3.h"
 | |
| #include "Lie-inl.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /** Explicit instantiation of base class to export members */
 | |
|   INSTANTIATE_LIE(Rot3);
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
| 	// static member functions to construct rotations
 | |
| 
 | |
|   Rot3 Rot3::Rx(double t) {
 | |
|   	double st = sin(t), ct = cos(t);
 | |
|   	return Rot3(
 | |
|   			1,  0,  0,
 | |
|   			0, ct,-st,
 | |
|   			0, st, ct);
 | |
|   }
 | |
| 
 | |
|   Rot3 Rot3::Ry(double t) {
 | |
|   	double st = sin(t), ct = cos(t);
 | |
|   	return Rot3(
 | |
|   			 ct, 0, st,
 | |
|   			  0, 1,  0,
 | |
|   			-st, 0, ct);
 | |
|   }
 | |
| 
 | |
|   Rot3 Rot3::Rz(double t) {
 | |
|   	double st = sin(t), ct = cos(t);
 | |
|   	return Rot3(
 | |
|   			ct,-st, 0,
 | |
|   			st, ct, 0,
 | |
|   			 0,  0, 1);
 | |
|   }
 | |
| 
 | |
|   // Considerably faster than composing matrices above !
 | |
|   Rot3 Rot3::RzRyRx(double x, double y, double z) {
 | |
|   	double cx=cos(x),sx=sin(x);
 | |
|   	double cy=cos(y),sy=sin(y);
 | |
|   	double cz=cos(z),sz=sin(z);
 | |
|   	double ss_ = sx * sy;
 | |
|   	double cs_ = cx * sy;
 | |
|   	double sc_ = sx * cy;
 | |
|   	double cc_ = cx * cy;
 | |
|   	double c_s = cx * sz;
 | |
|   	double s_s = sx * sz;
 | |
| 		double _cs = cy * sz;
 | |
|   	double _cc = cy * cz;
 | |
| 		double s_c = sx * cz;
 | |
| 		double c_c = cx * cz;
 | |
| 		double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz;
 | |
|   	return Rot3(
 | |
|   			_cc,- c_s + ssc,  s_s + csc,
 | |
|   			_cs,  c_c + sss, -s_c + css,
 | |
| 				-sy,        sc_,        cc_
 | |
|   			);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   bool Rot3::equals(const Rot3 & R, double tol) const {
 | |
|     return equal_with_abs_tol(matrix(), R.matrix(), tol);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Rot3::matrix() const {
 | |
|     double r[] = { r1_.x(), r2_.x(), r3_.x(),
 | |
|         r1_.y(), r2_.y(), r3_.y(),
 | |
|         r1_.z(), r2_.z(), r3_.z() };
 | |
|     return Matrix_(3,3, r);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Rot3::transpose() const {
 | |
|     double r[] = { r1_.x(), r1_.y(), r1_.z(),
 | |
|         r2_.x(), r2_.y(), r2_.z(),
 | |
|         r3_.x(), r3_.y(), r3_.z()};
 | |
|     return Matrix_(3,3, r);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Point3 Rot3::column(int index) const{
 | |
|     if(index == 3)
 | |
|       return r3_;
 | |
|     else if (index == 2)
 | |
|       return r2_;
 | |
|     else
 | |
|       return r1_; // default returns r1
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Vector Rot3::xyz() const {
 | |
|     Matrix I;Vector q;
 | |
|     boost::tie(I,q)=RQ(matrix());
 | |
|     return q;
 | |
|   }
 | |
| 
 | |
|   Vector Rot3::ypr() const {
 | |
|   	Vector q = xyz();
 | |
|     return Vector_(3,q(2),q(1),q(0));
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // Log map at identity - return the canonical coordinates of this rotation
 | |
|   inline Vector logmap(const Rot3& R) {
 | |
|     double tr = R.r1().x()+R.r2().y()+R.r3().z();
 | |
|     if (tr==3.0)         // when theta = 0, +-2pi, +-4pi, etc.
 | |
|       return zero(3);
 | |
|     else if (tr==-1.0) { // when theta = +-pi, +-3pi, +-5pi, etc.
 | |
|       if(R.r3().z() != -1.0)
 | |
|         return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r3().z())) *
 | |
|         Vector_(3, R.r3().x(), R.r3().y(), 1.0+R.r3().z());
 | |
|       else if(R.r2().y() != -1.0)
 | |
|         return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r2().y())) *
 | |
|         Vector_(3, R.r2().x(), 1.0+R.r2().y(), R.r2().z());
 | |
|       else if(R.r1().x() != -1.0)
 | |
|         return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r1().x())) *
 | |
|         Vector_(3, 1.0+R.r1().x(), R.r1().y(), R.r1().z());
 | |
|     } else {
 | |
|       double theta = acos((tr-1.0)/2.0);
 | |
|       return (theta/2.0/sin(theta))*Vector_(3,
 | |
|           R.r2().z()-R.r3().y(),
 | |
|           R.r3().x()-R.r1().z(),
 | |
|           R.r1().y()-R.r2().x());
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Rot3 rodriguez(const Vector& n, double t) {
 | |
|     double n0 = n(0), n1=n(1), n2=n(2);
 | |
|     double n00 = n0*n0, n11 = n1*n1, n22 = n2*n2;
 | |
| #ifndef NDEBUG
 | |
|     double l_n = n00+n11+n22;
 | |
|     if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1");
 | |
| #endif
 | |
| 
 | |
|     double ct = cos(t), st = sin(t), ct_1 = 1 - ct;
 | |
| 
 | |
|     double s0 = n0 * st, s1 = n1 * st, s2 = n2 * st;
 | |
|     double C01 = ct_1*n0*n1, C02 = ct_1*n0*n2, C12 = ct_1*n1*n2;
 | |
|     double C00 = ct_1*n00, C11 = ct_1*n11, C22 = ct_1*n22;
 | |
| 
 | |
|     Point3 r1 = Point3( ct + C00,  s2 + C01, -s1 + C02);
 | |
|     Point3 r2 = Point3(-s2 + C01,  ct + C11,  s0 + C12);
 | |
|     Point3 r3 = Point3( s1 + C02, -s0 + C12,  ct + C22);
 | |
| 
 | |
|     return Rot3(r1, r2, r3);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Rot3 rodriguez(const Vector& w) {
 | |
|     double t = norm_2(w);
 | |
|     if (t < 1e-5) return Rot3();
 | |
|     return rodriguez(w/t, t);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Point3 rotate(const Rot3& R, const Point3& p) {
 | |
|     return R.r1() * p.x() + R.r2() * p.y() + R.r3() * p.z();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Drotate1(const Rot3& R, const Point3& p) {
 | |
|     Point3 q = R * p;
 | |
|     return skewSymmetric(-q.x(), -q.y(), -q.z());
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Drotate2(const Rot3& R) {
 | |
|     return R.matrix();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Point3 unrotate(const Rot3& R, const Point3& p) {
 | |
|     return Point3(
 | |
|         R.r1().x() * p.x() + R.r1().y() * p.y() + R.r1().z() * p.z(),
 | |
|         R.r2().x() * p.x() + R.r2().y() * p.y() + R.r2().z() * p.z(),
 | |
|         R.r3().x() * p.x() + R.r3().y() * p.y() + R.r3().z() * p.z()
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   /** see libraries/caml/geometry/math.lyx, derivative of unrotate              */
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dunrotate1(const Rot3 & R, const Point3 & p) {
 | |
|     Point3 q = unrotate(R,p);
 | |
|     return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dunrotate2(const Rot3 & R) {
 | |
|     return R.transpose();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dcompose1(const Rot3& R1, const Rot3& R2){
 | |
|   	return eye(3);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dcompose2(const Rot3& R1, const Rot3& R2){
 | |
|     return R1.matrix();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dbetween1(const Rot3& R1, const Rot3& R2){
 | |
|   	return -between(R1,R2).matrix();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dbetween2(const Rot3& R1, const Rot3& R2){
 | |
|     return eye(3);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   pair<Matrix, Vector> RQ(const Matrix& A) {
 | |
| 
 | |
| 		double x = -atan2(-A(2, 1), A(2, 2));
 | |
| 		Rot3 Qx = Rot3::Rx(-x);
 | |
| 		Matrix B = A * Qx.matrix();
 | |
| 
 | |
| 		double y = -atan2(B(2, 0), B(2, 2));
 | |
| 		Rot3 Qy = Rot3::Ry(-y);
 | |
| 		Matrix C = B * Qy.matrix();
 | |
| 
 | |
| 		double z = -atan2(-C(1, 0), C(1, 1));
 | |
| 		Rot3 Qz = Rot3::Rz(-z);
 | |
| 		Matrix R = C * Qz.matrix();
 | |
| 
 | |
| 		Vector xyz = Vector_(3, x, y, z);
 | |
| 		return make_pair(R, xyz);
 | |
| 	}
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
| 
 | |
| } // namespace gtsam
 |