223 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			223 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file  Pose2.cpp
 | |
|  * @brief 2D Pose
 | |
|  */
 | |
| 
 | |
| #include "Pose2.h"
 | |
| #include "Lie-inl.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /** Explicit instantiation of base class to export members */
 | |
|   INSTANTIATE_LIE(Pose2);
 | |
| 
 | |
| 	static const Matrix I3 = eye(3), Z12 = zeros(1,2);
 | |
|   static const Rot2 R_PI_2(Rot2::fromCosSin(0., 1.));
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Pose2::matrix() const {
 | |
|   	Matrix R = r_.matrix();
 | |
|   	R = stack(2, &R, &Z12);
 | |
|   	Matrix T = Matrix_(3,1, t_.x(), t_.y(), 1.0);
 | |
|   	return collect(2, &R, &T);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   void Pose2::print(const string& s) const {
 | |
|     cout << s << "(" << t_.x() << ", " << t_.y() << ", " << r_.theta() << ")" << endl;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   bool Pose2::equals(const Pose2& q, double tol) const {
 | |
|     return t_.equals(q.t_, tol) && r_.equals(q.r_, tol);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
| 
 | |
| #ifdef SLOW_BUT_CORRECT_EXPMAP
 | |
| 
 | |
| 	template<> Pose2 expmap(const Vector& xi) {
 | |
| 		Point2 v(xi(0),xi(1));
 | |
| 		double w = xi(2);
 | |
| 		if (fabs(w) < 1e-5)
 | |
| 			return Pose2(xi[0], xi[1], xi[2]);
 | |
| 		else {
 | |
| 			Rot2 R(Rot2::fromAngle(w));
 | |
| 			Point2 v_ortho = R_PI_2 * v; // points towards rot center
 | |
| 			Point2 t = (v_ortho - rotate(R,v_ortho)) / w;
 | |
| 			return Pose2(R, t);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|   Vector logmap(const Pose2& p) {
 | |
|   	const Rot2& R = p.r();
 | |
|   	const Point2& t = p.t();
 | |
| 		double w = R.theta();
 | |
| 		if (fabs(w) < 1e-5)
 | |
| 			return Vector_(3, t.x(), t.y(), w);
 | |
| 		else {
 | |
| 			double c_1 = R.c()-1.0, s = R.s();
 | |
| 			double det = c_1*c_1 + s*s;
 | |
| 			Point2 p = R_PI_2 * (unrotate(R, t) - t);
 | |
| 			Point2 v = (w/det) * p;
 | |
| 			return Vector_(3, v.x(), v.y(), w);
 | |
| 		}
 | |
|   }
 | |
| 
 | |
| #else
 | |
| 
 | |
| 	template<> Pose2 expmap(const Vector& v) {
 | |
| 		return Pose2(v[0], v[1], v[2]);
 | |
| 	}
 | |
| 
 | |
| 	Vector logmap(const Pose2& p) {
 | |
| 		return Vector_(3, p.x(), p.y(), p.theta());
 | |
| 	}
 | |
| 
 | |
| #endif
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // Calculate Adjoint map
 | |
|   // Ad_pose is 3*3 matrix that when applied to twist xi, returns Ad_pose(xi)
 | |
|   Matrix AdjointMap(const Pose2& p) {
 | |
| 		const Rot2 R = p.r();
 | |
| 		const Point2 t = p.t();
 | |
|   	double c = R.c(), s = R.s(), x = t.x(), y = t.y();
 | |
| 		return Matrix_(3,3,
 | |
| 				  c,  -s,   y,
 | |
| 				  s,   c,  -x,
 | |
| 				0.0, 0.0, 1.0
 | |
| 				);
 | |
| 	}
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Pose2 inverse(const Pose2& pose) {
 | |
| 		const Rot2& R = pose.r();
 | |
| 		const Point2& t = pose.t();
 | |
| 		return Pose2(inverse(R), R.unrotate(Point2(-t.x(), -t.y())));
 | |
| 	}
 | |
| 
 | |
| 	Matrix Dinverse(const Pose2& pose) {
 | |
| 		return -AdjointMap(pose);
 | |
| 	}
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // see doc/math.lyx, SE(2) section
 | |
|   Point2 transform_to(const Pose2& pose, const Point2& point, boost::optional<
 | |
| 			Matrix&> H1, boost::optional<Matrix&> H2) {
 | |
| 		const Rot2& R = pose.r();
 | |
| 		Point2 d = point - pose.t();
 | |
| 		Point2 q = R.unrotate(d);
 | |
| 		if (!H1 && !H2) return q;
 | |
| 		if (H1) *H1 = Matrix_(2, 3,
 | |
| 					-1.0, 0.0,  q.y(),
 | |
| 					0.0, -1.0, -q.x());
 | |
| 		if (H2) *H2 = R.transpose();
 | |
| 		return q;
 | |
| 	}
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // see doc/math.lyx, SE(2) section
 | |
| 
 | |
|   Pose2 compose(const Pose2& p1, const Pose2& p2, boost::optional<Matrix&> H1,
 | |
|       boost::optional<Matrix&> H2) {
 | |
|     // TODO: inline and reuse?
 | |
|     if(H1) *H1 = AdjointMap(inverse(p2));
 | |
|     if(H2) *H2 = I3;
 | |
|     return p1*p2;
 | |
|   }
 | |
| 
 | |
|   Matrix Dcompose1(const Pose2& p1, const Pose2& p2) {
 | |
| 		return AdjointMap(inverse(p2));
 | |
|   }
 | |
| 
 | |
|   Matrix Dcompose2(const Pose2& p1, const Pose2& p2) {
 | |
|   	return I3;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // see doc/math.lyx, SE(2) section
 | |
|   Point2 transform_from(const Pose2& pose, const Point2& p,
 | |
|   		boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) {
 | |
|   	const Rot2& rot = pose.r();
 | |
| 		const Point2 q = rot * p;
 | |
|   	if (H1 || H2) {
 | |
| 			const Matrix R = rot.matrix();
 | |
| 			const Matrix Drotate1 = Matrix_(2, 1, -q.y(), q.x());
 | |
| 	  	if (H1) *H1 = collect(2, &R, &Drotate1); // [R R_{pi/2}q]
 | |
| 			if (H2) *H2 = R;                         // R
 | |
|   	}
 | |
| 		return q + pose.t();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Pose2 between(const Pose2& p1, const Pose2& p2, boost::optional<Matrix&> H1,
 | |
| 			boost::optional<Matrix&> H2) {
 | |
|   	// get cosines and sines from rotation matrices
 | |
|   	const Rot2& R1 = p1.r(), R2 = p2.r();
 | |
|   	double c1=R1.c(), s1=R1.s(), c2=R2.c(), s2=R2.s();
 | |
| 
 | |
|   	// Calculate delta rotation = between(R1,R2)
 | |
| 		double c = c1 * c2 + s1 * s2, s = -s1 * c2 + c1 * s2;
 | |
|     Rot2 R(Rot2::atan2(s,c)); // normalizes
 | |
| 
 | |
|   	// Calculate delta translation = unrotate(R1, dt);
 | |
| 		Point2 dt = p2.t() - p1.t();
 | |
| 		double x = dt.x(), y = dt.y();
 | |
| 		Point2 t(c1 * x + s1 * y, -s1 * x + c1 * y);
 | |
| 
 | |
| 		// FD: This is just -AdjointMap(between(p2,p1)) inlined and re-using above
 | |
| 		if (H1) {
 | |
| 			double dt1 = -s2 * x + c2 * y;
 | |
| 			double dt2 = -c2 * x - s2 * y;
 | |
| 			H1->resize(3,3);
 | |
| 			double data[9] = {
 | |
| 				-c,  -s,  dt1,
 | |
| 				 s,  -c,  dt2,
 | |
| 			 0.0, 0.0, -1.0};
 | |
| 			 copy(data, data+9, H1->data().begin());
 | |
| 		}
 | |
| 		if (H2) *H2 = I3;
 | |
| 
 | |
| 		return Pose2(R,t);
 | |
| 	}
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
| 	Rot2 bearing(const Pose2& pose, const Point2& point) {
 | |
| 		Point2 d = transform_to(pose, point);
 | |
| 		return relativeBearing(d);
 | |
| 	}
 | |
| 
 | |
| 	Rot2 bearing(const Pose2& pose, const Point2& point,
 | |
| 			boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) {
 | |
| 		if (!H1 && !H2) return bearing(pose, point);
 | |
| 		Point2 d = transform_to(pose, point, H1, H2);
 | |
| 		Matrix D_result_d;
 | |
| 		Rot2 result = relativeBearing(d, D_result_d);
 | |
| 		if (H1) *H1 = D_result_d * (*H1);
 | |
| 		if (H2) *H2 = D_result_d * (*H2);
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
| 	double range(const Pose2& pose, const Point2& point) {
 | |
| 		Point2 d = transform_to(pose, point);
 | |
| 		return d.norm();
 | |
| 	}
 | |
| 
 | |
| 	double range(const Pose2& pose, const Point2& point,
 | |
| 			boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) {
 | |
| 		if (!H1 && !H2) return range(pose, point);
 | |
| 		Point2 d = transform_to(pose, point, H1, H2);
 | |
| 		double x = d.x(), y = d.y(), d2 = x * x + y * y, n = sqrt(d2);
 | |
| 		Matrix D_result_d = Matrix_(1, 2, x / n, y / n);
 | |
| 		if (H1) *H1 = D_result_d * (*H1);
 | |
| 		if (H2) *H2 = D_result_d * (*H2);
 | |
| 		return n;
 | |
| 	}
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
| } // namespace gtsam
 |