256 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file    LinearFactor.cpp
 | 
						|
 * @brief   Linear Factor....A Gaussian
 | 
						|
 * @brief   linearFactor
 | 
						|
 * @author  Christian Potthast
 | 
						|
 */
 | 
						|
 | 
						|
#include <boost/foreach.hpp>
 | 
						|
#include <boost/tuple/tuple.hpp>
 | 
						|
#include "LinearFactor.h"
 | 
						|
 | 
						|
using namespace std;
 | 
						|
namespace ublas = boost::numeric::ublas;
 | 
						|
 | 
						|
// trick from some reading group
 | 
						|
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL) 
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
typedef pair<const string, Matrix>& mypair;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// we might have multiple As, so iterate and subtract from b
 | 
						|
double LinearFactor::error(const FGConfig& c) const {
 | 
						|
  if (empty()) return 0;
 | 
						|
  Vector e = b;
 | 
						|
  string j; Matrix Aj;
 | 
						|
  FOREACH_PAIR(j, Aj, As)
 | 
						|
    e -= Vector(Aj * c[j]);
 | 
						|
  return 0.5 * inner_prod(trans(e),e);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void LinearFactor::print(const string& s) const {
 | 
						|
  cout << s << endl;
 | 
						|
  if (empty()) cout << " empty" << endl; 
 | 
						|
  else {
 | 
						|
    string j; Matrix A;
 | 
						|
    FOREACH_PAIR(j,A,As) gtsam::print(A, "A["+j+"]=\n");
 | 
						|
    gtsam::print(b,"b=");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Check if two linear factors are equal
 | 
						|
bool LinearFactor::equals(const Factor& f, double tol) const {
 | 
						|
    
 | 
						|
  const LinearFactor* lf = dynamic_cast<const LinearFactor*>(&f);
 | 
						|
  if (lf == NULL) return false;
 | 
						|
 | 
						|
  if (empty()) return (lf->empty());
 | 
						|
 | 
						|
  const_iterator it1 = As.begin(), it2 = lf->As.begin();
 | 
						|
  if(As.size() != lf->As.size()) goto fail;
 | 
						|
 | 
						|
  for(; it1 != As.end(); it1++, it2++){
 | 
						|
    const string& j1 = it1->first, j2 = it2->first;
 | 
						|
    const Matrix A1 = it1->second, A2 = it2->second;
 | 
						|
    if (j1 != j2) goto fail;
 | 
						|
    if (!equal_with_abs_tol(A1,A2,tol)) {
 | 
						|
      cout << "A1[" << j1 << "] != A2[" << j2 << "]" << endl;
 | 
						|
      goto fail;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if( !(::equal_with_abs_tol(b, (lf->b),tol)) ) {
 | 
						|
    cout << "RHS disagree" << endl;
 | 
						|
    goto fail;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
 | 
						|
 fail:
 | 
						|
  // they don't match, print out and fail
 | 
						|
  print();
 | 
						|
  lf->print();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
list<string> LinearFactor::keys() const {
 | 
						|
	list<string> result;
 | 
						|
  string j; Matrix A;
 | 
						|
  FOREACH_PAIR(j,A,As)
 | 
						|
    result.push_back(j);
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
VariableSet LinearFactor::variables() const {
 | 
						|
  VariableSet result;
 | 
						|
  string j; Matrix A;
 | 
						|
  FOREACH_PAIR(j,A,As) {
 | 
						|
    Variable v(j,A.size2());
 | 
						|
    result.insert(v);
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void LinearFactor::tally_separator(const string& key, set<string>& separator) const {
 | 
						|
  if(involves(key)) {
 | 
						|
    string j; Matrix A;
 | 
						|
    FOREACH_PAIR(j,A,As)
 | 
						|
      if(j != key) separator.insert(j);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */  
 | 
						|
pair<Matrix,Vector> LinearFactor::matrix(const Ordering& ordering) const {
 | 
						|
 | 
						|
  // get pointers to the matrices
 | 
						|
  vector<const Matrix *> matrices;
 | 
						|
  BOOST_FOREACH(string j, ordering) {
 | 
						|
    const Matrix& Aj = get_A(j);
 | 
						|
    matrices.push_back(&Aj);
 | 
						|
  }
 | 
						|
 | 
						|
  return make_pair( collect(matrices), b);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void MutableLinearFactor::append_factor(LinearFactor::shared_ptr f, const size_t m, const size_t pos)
 | 
						|
{
 | 
						|
  // iterate over all matrices from the factor f
 | 
						|
  LinearFactor::const_iterator it = f->begin();
 | 
						|
  for(; it != f->end(); it++) {
 | 
						|
    string j = it->first;
 | 
						|
    Matrix A = it->second;
 | 
						|
 | 
						|
    // find rows and columns
 | 
						|
    const size_t mrhs = A.size1(), n = A.size2();
 | 
						|
 | 
						|
    // find the corresponding matrix among As
 | 
						|
    const_iterator mine = As.find(j);
 | 
						|
    const bool exists = mine!=As.end();
 | 
						|
 | 
						|
    // create the matrix or use existing
 | 
						|
    Matrix Anew = exists ? mine->second : zeros(m,n);
 | 
						|
 | 
						|
    // copy the values in the existing matrix
 | 
						|
    for (size_t i=0;i<mrhs;i++)
 | 
						|
      for(size_t j=0;j<n;j++)
 | 
						|
	Anew(pos+i,j)=A(i,j);
 | 
						|
 | 
						|
    // insert the matrix into the factor
 | 
						|
    if(exists) As.erase(j);
 | 
						|
    insert(j,Anew);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
MutableLinearFactor::MutableLinearFactor(const set<shared_ptr> & factors)
 | 
						|
{
 | 
						|
  // Create RHS vector of the right size by adding together row counts
 | 
						|
  size_t m = 0;
 | 
						|
  BOOST_FOREACH(shared_ptr factor, factors) m += factor->numberOfRows();
 | 
						|
  b = Vector(m);
 | 
						|
 | 
						|
  size_t pos = 0; // save last position inserted into the new rhs vector
 | 
						|
 | 
						|
  // iterate over all factors
 | 
						|
  BOOST_FOREACH(shared_ptr factor, factors){
 | 
						|
    // number of rows for factor f
 | 
						|
    const size_t mf = factor->numberOfRows();
 | 
						|
 | 
						|
    // copy the rhs vector from factor to b
 | 
						|
    const Vector bf = factor->get_b();
 | 
						|
    for (size_t i=0; i<mf; i++) b(pos+i) = bf(i);
 | 
						|
 | 
						|
    // update the matrices
 | 
						|
    append_factor(factor,m,pos);
 | 
						|
 | 
						|
    pos += mf;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/* Note, in place !!!!
 | 
						|
 * Do incomplete QR factorization for the first n columns
 | 
						|
 * We will do QR on all matrices and on RHS
 | 
						|
 * Then take first n rows and make a ConditionalGaussian,
 | 
						|
 * and last rows to make a new joint linear factor on separator
 | 
						|
 */
 | 
						|
/* ************************************************************************* */
 | 
						|
pair<ConditionalGaussian::shared_ptr, LinearFactor::shared_ptr>
 | 
						|
MutableLinearFactor::eliminate(const string& key)
 | 
						|
{
 | 
						|
  // start empty remaining factor to be returned
 | 
						|
  boost::shared_ptr<MutableLinearFactor> lf(new MutableLinearFactor);
 | 
						|
 | 
						|
  // find the matrix associated with key
 | 
						|
  iterator it = As.find(key);
 | 
						|
 | 
						|
  // if this factor does not involve key, we exit with empty CG and LF
 | 
						|
  if (it==As.end()) {
 | 
						|
    // Conditional Gaussian is just a parent-less node with P(x)=1
 | 
						|
    ConditionalGaussian::shared_ptr cg(new ConditionalGaussian);
 | 
						|
    return make_pair(cg,lf);
 | 
						|
  }
 | 
						|
 | 
						|
  // get the matrix reference associated with key
 | 
						|
  const Matrix& R = it->second;
 | 
						|
  const size_t m = R.size1(), n = R.size2();
 | 
						|
 | 
						|
  // if m<n, this factor cannot be eliminated
 | 
						|
  if (m<n)
 | 
						|
    throw(domain_error("LinearFactor::eliminate: fewer constraints than unknowns"));
 | 
						|
  
 | 
						|
  // we will apply n Householder reflections to zero out R below diagonal
 | 
						|
  for(size_t j=0; j < n; j++){
 | 
						|
    // below, the indices r,c always refer to original A
 | 
						|
 | 
						|
    // copy column from matrix to xjm, i.e. x(j:m) = R(j:m,j)
 | 
						|
    Vector xjm(m-j);
 | 
						|
    for(size_t r = j ; r < m; r++)
 | 
						|
      xjm(r-j) = R(r,j);
 | 
						|
        
 | 
						|
    // calculate the Householder vector v
 | 
						|
    double beta; Vector vjm;
 | 
						|
    boost::tie(beta,vjm) = house(xjm);
 | 
						|
 | 
						|
    // update all matrices
 | 
						|
    BOOST_FOREACH(mypair jA,As) {
 | 
						|
      // update A matrix using reflection as in householder_
 | 
						|
      Matrix& A = jA.second;
 | 
						|
      householder_update(A, j, beta, vjm);
 | 
						|
    }
 | 
						|
 | 
						|
    // update RHS, b -= (beta * inner_prod(v,b)) * v;
 | 
						|
    double inner = 0;
 | 
						|
    for(size_t r = j ; r < m; r++) 
 | 
						|
      inner += vjm(r-j) * (b)(r);
 | 
						|
    for(size_t r = j ; r < m; r++) 
 | 
						|
      (b)(r) -= beta*inner*vjm(r-j);
 | 
						|
  } // column j
 | 
						|
  
 | 
						|
  // create ConditionalGaussian with first n rows
 | 
						|
  ConditionalGaussian::shared_ptr cg (new ConditionalGaussian(::sub(b,0,n), sub(R,0,n,0,n)) );
 | 
						|
  
 | 
						|
  // create linear factor with remaining rows
 | 
						|
  lf->set_b(::sub(b,n,m));
 | 
						|
 | 
						|
  // for every separator variable
 | 
						|
  string j; Matrix A;
 | 
						|
  FOREACH_PAIR(j,A,As) {
 | 
						|
    if (j != key) {
 | 
						|
      const size_t nj = A.size2();   // get dimension of variable
 | 
						|
      cg->add(j, sub(A,0,n,0,nj));   // add a parent to conditional gaussian
 | 
						|
      lf->insert(j,sub(A,n,m,0,nj)); // insert into linear factor
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return make_pair(cg,lf);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 |