248 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    testNonlinearFactorGraph.cpp
 | |
|  * @brief   Unit tests for Non-Linear Factor NonlinearFactorGraph
 | |
|  * @brief   testNonlinearFactorGraph
 | |
|  * @author  Carlos Nieto
 | |
|  * @author  Christian Potthast
 | |
|  */
 | |
| 
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| #include <tests/smallExample.h>
 | |
| #include <gtsam/inference/FactorGraph.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/symbolic/SymbolicFactorGraph.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/sam/RangeFactor.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <boost/assign/std/list.hpp>
 | |
| #include <boost/assign/std/set.hpp>
 | |
| using namespace boost::assign;
 | |
| 
 | |
| /*STL/C++*/
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, equals )
 | |
| {
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph fg2 = createNonlinearFactorGraph();
 | |
|   CHECK( fg.equals(fg2) );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, error )
 | |
| {
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
|   Values c1 = createValues();
 | |
|   double actual1 = fg.error(c1);
 | |
|   DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
 | |
| 
 | |
|   Values c2 = createNoisyValues();
 | |
|   double actual2 = fg.error(c2);
 | |
|   DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, keys )
 | |
| {
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
|   KeySet actual = fg.keys();
 | |
|   LONGS_EQUAL(3, (long)actual.size());
 | |
|   KeySet::const_iterator it = actual.begin();
 | |
|   LONGS_EQUAL((long)L(1), (long)*(it++));
 | |
|   LONGS_EQUAL((long)X(1), (long)*(it++));
 | |
|   LONGS_EQUAL((long)X(2), (long)*(it++));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, GET_ORDERING)
 | |
| {
 | |
|   Ordering expected; expected += L(1), X(2), X(1); // For starting with l1,x1,x2
 | |
|   NonlinearFactorGraph nlfg = createNonlinearFactorGraph();
 | |
|   Ordering actual = Ordering::Colamd(nlfg);
 | |
|   EXPECT(assert_equal(expected,actual));
 | |
| 
 | |
|   // Constrained ordering - put x2 at the end
 | |
|   Ordering expectedConstrained; expectedConstrained += L(1), X(1), X(2);
 | |
|   FastMap<Key, int> constraints;
 | |
|   constraints[X(2)] = 1;
 | |
|   Ordering actualConstrained = Ordering::ColamdConstrained(nlfg, constraints);
 | |
|   EXPECT(assert_equal(expectedConstrained, actualConstrained));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, probPrime )
 | |
| {
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
|   Values cfg = createValues();
 | |
| 
 | |
|   // evaluate the probability of the factor graph
 | |
|   double actual = fg.probPrime(cfg);
 | |
|   double expected = 1.0;
 | |
|   DOUBLES_EQUAL(expected,actual,0);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, linearize )
 | |
| {
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
|   Values initial = createNoisyValues();
 | |
|   GaussianFactorGraph linearFG = *fg.linearize(initial);
 | |
|   GaussianFactorGraph expected = createGaussianFactorGraph();
 | |
|   CHECK(assert_equal(expected,linearFG)); // Needs correct linearizations
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, clone )
 | |
| {
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph actClone = fg.clone();
 | |
|   EXPECT(assert_equal(fg, actClone));
 | |
|   for (size_t i=0; i<fg.size(); ++i)
 | |
|     EXPECT(fg[i] != actClone[i]);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, rekey )
 | |
| {
 | |
|   NonlinearFactorGraph init = createNonlinearFactorGraph();
 | |
|   map<Key,Key> rekey_mapping;
 | |
|   rekey_mapping.insert(make_pair(L(1), L(4)));
 | |
|   NonlinearFactorGraph actRekey = init.rekey(rekey_mapping);
 | |
| 
 | |
|   // ensure deep clone
 | |
|   LONGS_EQUAL((long)init.size(), (long)actRekey.size());
 | |
|   for (size_t i=0; i<init.size(); ++i)
 | |
|       EXPECT(init[i] != actRekey[i]);
 | |
| 
 | |
|   NonlinearFactorGraph expRekey;
 | |
|   // original measurements
 | |
|   expRekey.push_back(init[0]);
 | |
|   expRekey.push_back(init[1]);
 | |
| 
 | |
|   // updated measurements
 | |
|   Point2 z3(0, -1),  z4(-1.5, -1.);
 | |
|   SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
 | |
|   expRekey += simulated2D::Measurement(z3, sigma0_2, X(1), L(4));
 | |
|   expRekey += simulated2D::Measurement(z4, sigma0_2, X(2), L(4));
 | |
| 
 | |
|   EXPECT(assert_equal(expRekey, actRekey));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactorGraph, symbolic )
 | |
| {
 | |
|   NonlinearFactorGraph graph = createNonlinearFactorGraph();
 | |
| 
 | |
|   SymbolicFactorGraph expected;
 | |
|   expected.push_factor(X(1));
 | |
|   expected.push_factor(X(1), X(2));
 | |
|   expected.push_factor(X(1), L(1));
 | |
|   expected.push_factor(X(2), L(1));
 | |
| 
 | |
|   SymbolicFactorGraph actual = *graph.symbolic();
 | |
| 
 | |
|   EXPECT(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(NonlinearFactorGraph, UpdateCholesky) {
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
|   Values initial = createNoisyValues();
 | |
| 
 | |
|   // solve conventionally
 | |
|   GaussianFactorGraph linearFG = *fg.linearize(initial);
 | |
|   auto delta = linearFG.optimizeDensely();
 | |
|   auto expected = initial.retract(delta);
 | |
| 
 | |
|   // solve with new method
 | |
|   EXPECT(assert_equal(expected, fg.updateCholesky(initial)));
 | |
| 
 | |
|   // solve with Ordering
 | |
|   Ordering ordering;
 | |
|   ordering += L(1), X(2), X(1);
 | |
|   EXPECT(assert_equal(expected, fg.updateCholesky(initial, ordering)));
 | |
| 
 | |
|   // solve with new method, heavily damped
 | |
|   auto dampen = [](const HessianFactor::shared_ptr& hessianFactor) {
 | |
|     auto iterator = hessianFactor->begin();
 | |
|     for (; iterator != hessianFactor->end(); iterator++) {
 | |
|       const auto index = std::distance(hessianFactor->begin(), iterator);
 | |
|       auto block = hessianFactor->info().diagonalBlock(index);
 | |
|       for (int j = 0; j < block.rows(); j++) {
 | |
|         block(j, j) += 1e9;
 | |
|       }
 | |
|     }
 | |
|   };
 | |
|   EXPECT(assert_equal(initial, fg.updateCholesky(initial, boost::none, dampen), 1e-6));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Example from issue #452 which threw an ILS error. The reason was a very 
 | |
| // weak prior on heading, which was tightened, and the ILS disappeared.
 | |
| TEST(testNonlinearFactorGraph, eliminate) {
 | |
|   // Linearization point
 | |
|   Pose2 T11(0, 0, 0);
 | |
|   Pose2 T12(1, 0, 0);
 | |
|   Pose2 T21(0, 1, 0);
 | |
|   Pose2 T22(1, 1, 0);
 | |
| 
 | |
|   // Factor graph
 | |
|   auto graph = NonlinearFactorGraph();
 | |
| 
 | |
|   // Priors
 | |
|   auto prior = noiseModel::Isotropic::Sigma(3, 1);
 | |
|   graph.add(PriorFactor<Pose2>(11, T11, prior));
 | |
|   graph.add(PriorFactor<Pose2>(21, T21, prior));
 | |
| 
 | |
|   // Odometry
 | |
|   auto model = noiseModel::Diagonal::Sigmas(Vector3(0.01, 0.01, 0.3));
 | |
|   graph.add(BetweenFactor<Pose2>(11, 12, T11.between(T12), model));
 | |
|   graph.add(BetweenFactor<Pose2>(21, 22, T21.between(T22), model));
 | |
| 
 | |
|   // Range factor
 | |
|   auto model_rho = noiseModel::Isotropic::Sigma(1, 0.01);
 | |
|   graph.add(RangeFactor<Pose2>(12, 22, 1.0, model_rho));
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(11, T11.retract(Vector3(0.1,0.2,0.3)));
 | |
|   values.insert(12, T12);
 | |
|   values.insert(21, T21);
 | |
|   values.insert(22, T22);
 | |
|   auto linearized = graph.linearize(values);
 | |
| 
 | |
|   // Eliminate
 | |
|   Ordering ordering;
 | |
|   ordering += 11, 21, 12, 22;
 | |
|   auto bn = linearized->eliminateSequential(ordering);
 | |
|   EXPECT_LONGS_EQUAL(4, bn->size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |