451 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			451 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * @file testSQP.cpp
 | |
|  * @brief demos of SQP using existing gtsam components
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <iostream>
 | |
| #include <cmath>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/map.hpp> // for insert
 | |
| #include <boost/foreach.hpp>
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <GaussianFactorGraph.h>
 | |
| #include <NonlinearFactor.h>
 | |
| #include <NonlinearEquality.h>
 | |
| #include <NonlinearFactorGraph.h>
 | |
| #include <NonlinearOptimizer.h>
 | |
| #include <Simulated2DMeasurement.h>
 | |
| #include <simulated2D.h>
 | |
| #include <Ordering.h>
 | |
| 
 | |
| // templated implementations
 | |
| #include <NonlinearFactorGraph-inl.h>
 | |
| #include <NonlinearConstraint-inl.h>
 | |
| #include <NonlinearOptimizer-inl.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost::assign;
 | |
| 
 | |
| // trick from some reading group
 | |
| #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
 | |
| 
 | |
| /**
 | |
|  * This example uses a nonlinear objective function and
 | |
|  * nonlinear equality constraint.  The formulation is actually
 | |
|  * the Choleski form that creates the full Hessian explicitly,
 | |
|  * which should really be avoided with our QR-based machinery.
 | |
|  *
 | |
|  * Note: the update equation used here has a fixed step size
 | |
|  * and gain that is rather arbitrarily chosen, and as such,
 | |
|  * will take a silly number of iterations.
 | |
|  */
 | |
| TEST (SQP, problem1_choleski ) {
 | |
| 	bool verbose = false;
 | |
| 	// use a nonlinear function of f(x) = x^2+y^2
 | |
| 	// nonlinear equality constraint: g(x) = x^2-5-y=0
 | |
| 	// Lagrangian: f(x) + lam*g(x)
 | |
| 
 | |
| 	// state structure: [x y lam]
 | |
| 	VectorConfig init, state;
 | |
| 	init.insert("x", Vector_(1, 1.0));
 | |
| 	init.insert("y", Vector_(1, 1.0));
 | |
| 	init.insert("lam", Vector_(1, 1.0));
 | |
| 	state = init;
 | |
| 
 | |
| 	if (verbose) init.print("Initial State");
 | |
| 
 | |
| 	// loop until convergence
 | |
| 	int maxIt = 10;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
| 		if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
 | |
| 
 | |
| 		// extract the states
 | |
| 		double x, y, lam;
 | |
| 		x = state["x"](0);
 | |
| 		y = state["y"](0);
 | |
| 		lam = state["lam"](0);
 | |
| 
 | |
| 		// calculate the components
 | |
| 		Matrix H1, H2, gradG;
 | |
| 		Vector gradL, gx;
 | |
| 
 | |
| 		// hessian of lagrangian function, in two columns:
 | |
| 		H1 = Matrix_(2,1,
 | |
| 				2.0+2.0*lam,
 | |
| 				0.0);
 | |
| 		H2 = Matrix_(2,1,
 | |
| 				0.0,
 | |
| 				2.0);
 | |
| 
 | |
| 		// deriviative of lagrangian function
 | |
| 		gradL = Vector_(2,
 | |
| 				2.0*x*(1+lam),
 | |
| 				2.0*y-lam);
 | |
| 
 | |
| 		// constraint derivatives
 | |
| 		gradG = Matrix_(2,1,
 | |
| 				2.0*x,
 | |
| 				0.0);
 | |
| 
 | |
| 		// constraint value
 | |
| 		gx = Vector_(1,
 | |
| 				x*x-5-y);
 | |
| 
 | |
| 		// create a factor for the states
 | |
| 		GaussianFactor::shared_ptr f1(new
 | |
| 				GaussianFactor("x", H1, "y", H2, "lam", gradG, gradL, 1.0));
 | |
| 
 | |
| 		// create a factor for the lagrange multiplier
 | |
| 		GaussianFactor::shared_ptr f2(new
 | |
| 				GaussianFactor("x", -sub(gradG, 0, 1, 0, 1),
 | |
| 							   "y", -sub(gradG, 1, 2, 0, 1), -gx, 0.0));
 | |
| 
 | |
| 		// construct graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		fg.push_back(f1);
 | |
| 		fg.push_back(f2);
 | |
| 		if (verbose) fg.print("Graph");
 | |
| 
 | |
| 		// solve
 | |
| 		Ordering ord;
 | |
| 		ord += "x", "y", "lam";
 | |
| 		VectorConfig delta = fg.optimize(ord).scale(-1.0);
 | |
| 		if (verbose) delta.print("Delta");
 | |
| 
 | |
| 		// update initial estimate
 | |
| 		VectorConfig newState = state.exmap(delta);
 | |
| 		state = newState;
 | |
| 
 | |
| 		if (verbose) state.print("Updated State");
 | |
| 	}
 | |
| 
 | |
| 	// verify that it converges to the nearest optimal point
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert("lam", Vector_(1, -1.0));
 | |
| 	expected.insert("x", Vector_(1, 2.12));
 | |
| 	expected.insert("y", Vector_(1, -0.5));
 | |
| 	CHECK(assert_equal(expected,state, 1e-2));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This example uses a nonlinear objective function and
 | |
|  * nonlinear equality constraint.  This formulation splits
 | |
|  * the constraint into a factor and a linear constraint.
 | |
|  *
 | |
|  * This example uses the same silly number of iterations as the
 | |
|  * previous example.
 | |
|  */
 | |
| TEST (SQP, problem1_sqp ) {
 | |
| 	bool verbose = false;
 | |
| 	// use a nonlinear function of f(x) = x^2+y^2
 | |
| 	// nonlinear equality constraint: g(x) = x^2-5-y=0
 | |
| 	// Lagrangian: f(x) + lam*g(x)
 | |
| 
 | |
| 	// state structure: [x y lam]
 | |
| 	VectorConfig init, state;
 | |
| 	init.insert("x", Vector_(1, 1.0));
 | |
| 	init.insert("y", Vector_(1, 1.0));
 | |
| 	init.insert("lam", Vector_(1, 1.0));
 | |
| 	state = init;
 | |
| 
 | |
| 	if (verbose) init.print("Initial State");
 | |
| 
 | |
| 	// loop until convergence
 | |
| 	int maxIt = 5;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
| 		if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
 | |
| 
 | |
| 		// extract the states
 | |
| 		double x, y, lam;
 | |
| 		x = state["x"](0);
 | |
| 		y = state["y"](0);
 | |
| 		lam = state["lam"](0);
 | |
| 
 | |
| 		// create components
 | |
| 		Matrix A = eye(2);
 | |
| 		Matrix gradG = Matrix_(1, 2,
 | |
| 				2*x, -1.0);
 | |
| 		Vector g = Vector_(1,
 | |
| 				x*x-y-5);
 | |
| 		Vector b = Vector_(2, x, y);
 | |
| 
 | |
| 		/** create the linear factor
 | |
| 		 * ||h(x)-z||^2 => ||Ax-b||^2
 | |
| 		 *  where:
 | |
| 		 *		h(x) simply returns the inputs
 | |
| 		 *		z    zeros(2)
 | |
| 		 *		A 	 identity
 | |
| 		 *		b	 linearization point
 | |
| 		 */
 | |
| 		GaussianFactor::shared_ptr f1(
 | |
| 						new GaussianFactor("x", sub(A, 0,2, 0,1), // A(:,1)
 | |
| 										   "y", sub(A, 0,2, 1,2), // A(:,2)
 | |
| 										   b,                     // rhs of f(x)
 | |
| 										   1.0));                 // arbitrary sigma
 | |
| 
 | |
| 		/** create the constraint-linear factor
 | |
| 		 * Provides a mechanism to use variable gain to force the constraint
 | |
| 		 * to zero
 | |
| 		 * lam*gradG*dx + dlam + lam
 | |
| 		 * formulated in matrix form as:
 | |
| 		 * [lam*gradG eye(1)] [dx; dlam] = zero
 | |
| 		 */
 | |
| 		GaussianFactor::shared_ptr f2(
 | |
| 				new GaussianFactor("x", lam*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
 | |
| 								   "y", lam*sub(gradG, 0,1, 1,2), // scaled gradG(:,2)
 | |
| 								   "lam", eye(1),     // dlam term
 | |
| 								   Vector_(1, 0.0),             // rhs is zero
 | |
| 								   1.0));                         // arbitrary sigma
 | |
| 
 | |
| 		// create the actual constraint
 | |
| 		// [gradG] [x; y]- g = 0
 | |
| 		GaussianFactor::shared_ptr c1(
 | |
| 				new GaussianFactor("x", sub(gradG, 0,1, 0,1),   // slice first part of gradG
 | |
| 								   "y", sub(gradG, 0,1, 1,2),   // slice second part of gradG
 | |
| 								   g,                           // value of constraint function
 | |
| 								   0.0));                       // force to constraint
 | |
| 
 | |
| 		// construct graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		fg.push_back(f1);
 | |
| 		fg.push_back(f2);
 | |
| 		fg.push_back(c1);
 | |
| 		if (verbose) fg.print("Graph");
 | |
| 
 | |
| 		// solve
 | |
| 		Ordering ord;
 | |
| 		ord += "x", "y", "lam";
 | |
| 		VectorConfig delta = fg.optimize(ord).scale(-1.0); // flip sign
 | |
| 		if (verbose) delta.print("Delta");
 | |
| 
 | |
| 		// update initial estimate
 | |
| 		VectorConfig newState = state.exmap(delta);
 | |
| 
 | |
| 		// set the state to the updated state
 | |
| 		state = newState;
 | |
| 
 | |
| 		if (verbose) state.print("Updated State");
 | |
| 	}
 | |
| 
 | |
| 	// verify that it converges to the nearest optimal point
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert("x", Vector_(1, 2.12));
 | |
| 	expected.insert("y", Vector_(1, -0.5));
 | |
| 	CHECK(assert_equal(state["x"], expected["x"], 1e-2));
 | |
| 	CHECK(assert_equal(state["y"], expected["y"], 1e-2));
 | |
| }
 | |
| 
 | |
| // components for nonlinear factor graphs
 | |
| bool vector_compare(const std::string& key,
 | |
| 					const VectorConfig& feasible,
 | |
| 					const VectorConfig& input) {
 | |
| 	Vector feas, lin;
 | |
| 	feas = feasible[key];
 | |
| 	lin = input[key];
 | |
| 	return equal_with_abs_tol(lin, feas, 1e-5);
 | |
| }
 | |
| typedef NonlinearFactorGraph<VectorConfig> NLGraph;
 | |
| typedef boost::shared_ptr<NonlinearFactor<VectorConfig> > shared;
 | |
| typedef boost::shared_ptr<NonlinearConstraint<VectorConfig> > shared_c;
 | |
| typedef boost::shared_ptr<NonlinearEquality<VectorConfig> > shared_eq;
 | |
| typedef boost::shared_ptr<VectorConfig> shared_cfg;
 | |
| typedef NonlinearOptimizer<NLGraph,VectorConfig> Optimizer;
 | |
| /**
 | |
|  * Determining a ground truth nonlinear system
 | |
|  * with two poses seeing one landmark, with each pose
 | |
|  * constrained to a particular value
 | |
|  */
 | |
| TEST (SQP, two_pose_truth ) {
 | |
| 	bool verbose = false;
 | |
| 	// position (1, 1) constraint for x1
 | |
| 	// position (5, 6) constraint for x2
 | |
| 	VectorConfig feas;
 | |
| 	feas.insert("x1", Vector_(2, 1.0, 1.0));
 | |
| 	feas.insert("x2", Vector_(2, 5.0, 6.0));
 | |
| 
 | |
| 	// constant constraint on x1
 | |
| 	shared_eq ef1(new NonlinearEquality<VectorConfig>("x1", feas, 2, *vector_compare));
 | |
| 
 | |
| 	// constant constraint on x2
 | |
| 	shared_eq ef2(new NonlinearEquality<VectorConfig>("x2", feas, 2, *vector_compare));
 | |
| 
 | |
| 	// measurement from x1 to l1
 | |
| 	Vector z1 = Vector_(2, 0.0, 5.0);
 | |
| 	double sigma1 = 0.1;
 | |
| 	shared f1(new Simulated2DMeasurement(z1, sigma1, "x1", "l1"));
 | |
| 
 | |
| 	// measurement from x2 to l1
 | |
| 	Vector z2 = Vector_(2, -4.0, 0.0);
 | |
| 	double sigma2 = 0.1;
 | |
| 	shared f2(new Simulated2DMeasurement(z2, sigma2, "x2", "l1"));
 | |
| 
 | |
| 	// construct the graph
 | |
| 	NLGraph graph;
 | |
| 	graph.push_back(ef1);
 | |
| 	graph.push_back(ef2);
 | |
| 	graph.push_back(f1);
 | |
| 	graph.push_back(f2);
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	boost::shared_ptr<VectorConfig> initialEstimate(new VectorConfig(feas)); // must start with feasible set
 | |
| 	initialEstimate->insert("l1", Vector_(2, 1.0, 6.0)); // ground truth
 | |
| 	//initialEstimate->insert("l1", Vector_(2, 1.2, 5.6)); // with small error
 | |
| 
 | |
| 	// optimize the graph
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1", "x2", "l1";
 | |
| 	Optimizer optimizer(graph, ordering, initialEstimate, 1e-5);
 | |
| 
 | |
| 	// display solution
 | |
| 	double relativeThreshold = 1e-5;
 | |
| 	double absoluteThreshold = 1e-5;
 | |
| 	Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold);
 | |
| 	boost::shared_ptr<const VectorConfig> actual = act_opt.config();
 | |
| 	if (verbose) actual->print("Configuration after optimization");
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected(feas);
 | |
| 	expected.insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	CHECK(assert_equal(expected, *actual, 1e-5));
 | |
| }
 | |
| 
 | |
| namespace sqp_test1 {
 | |
| // binary constraint between landmarks
 | |
| /** g(x) = x-y = 0 */
 | |
| Vector g_func(const VectorConfig& config, const std::string& key1, const std::string& key2) {
 | |
| 	return config[key1]-config[key2];
 | |
| }
 | |
| 
 | |
| /** gradient at l1 */
 | |
| Matrix grad_g1(const VectorConfig& config, const std::string& key) {
 | |
| 	return eye(2);
 | |
| }
 | |
| 
 | |
| /** gradient at l2 */
 | |
| Matrix grad_g2(const VectorConfig& config, const std::string& key) {
 | |
| 	return -1*eye(2);
 | |
| }
 | |
| } // \namespace sqp_test1
 | |
| 
 | |
| namespace sqp_test2 {
 | |
| // Unary Constraint on x1
 | |
| /** g(x) = x -[1;1] = 0 */
 | |
| Vector g_func(const VectorConfig& config, const std::string& key) {
 | |
| 	return config[key]-Vector_(2, 1.0, 1.0);
 | |
| }
 | |
| 
 | |
| /** gradient at x1 */
 | |
| Matrix grad_g(const VectorConfig& config, const std::string& key) {
 | |
| 	return eye(2);
 | |
| }
 | |
| } // \namespace sqp_test2
 | |
| 
 | |
| /**
 | |
|  *  Version that actually uses nonlinear equality constraints
 | |
|  *  to to perform optimization.  Same as above, but no
 | |
|  *  equality constraint on x2, and two landmarks that
 | |
|  *  should be the same.
 | |
|  */
 | |
| TEST (SQP, two_pose ) {
 | |
| 	bool verbose = false;
 | |
| 	// position (1, 1) constraint for x1
 | |
| 	VectorConfig feas;
 | |
| 	feas.insert("x1", Vector_(2, 1.0, 1.0));
 | |
| 
 | |
| 	// constant constraint on x1
 | |
| 	boost::shared_ptr<NonlinearConstraint1<VectorConfig> > c1(
 | |
| 			new NonlinearConstraint1<VectorConfig>(
 | |
| 					"x1", *sqp_test2::grad_g,
 | |
| 					*sqp_test2::g_func, 2, "L_x1"));
 | |
| 
 | |
| 	// measurement from x1 to l1
 | |
| 	Vector z1 = Vector_(2, 0.0, 5.0);
 | |
| 	double sigma1 = 0.1;
 | |
| 	shared f1(new Simulated2DMeasurement(z1, sigma1, "x1", "l1"));
 | |
| 
 | |
| 	// measurement from x2 to l2
 | |
| 	Vector z2 = Vector_(2, -4.0, 0.0);
 | |
| 	double sigma2 = 0.1;
 | |
| 	shared f2(new Simulated2DMeasurement(z2, sigma2, "x2", "l2"));
 | |
| 
 | |
| 	// equality constraint between l1 and l2
 | |
| 	boost::shared_ptr<NonlinearConstraint2<VectorConfig> > c2(
 | |
| 			new NonlinearConstraint2<VectorConfig>(
 | |
| 					"l1", *sqp_test1::grad_g1,
 | |
| 					"l2", *sqp_test1::grad_g2,
 | |
| 					*sqp_test1::g_func, 2, "L_l1l2"));
 | |
| 
 | |
| 	// construct the graph
 | |
| 	NLGraph graph;
 | |
| 	graph.push_back(c1);
 | |
| 	graph.push_back(c2);
 | |
| 	graph.push_back(f1);
 | |
| 	graph.push_back(f2);
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	shared_cfg initialEstimate(new VectorConfig(feas)); // must start with feasible set
 | |
| 	initialEstimate->insert("l1", Vector_(2, 1.0, 6.0)); // ground truth
 | |
| 	initialEstimate->insert("l2", Vector_(2, -4.0, 0.0)); // starting with a separate reference frame
 | |
| 	initialEstimate->insert("x2", Vector_(2, 0.0, 0.0)); // other pose starts at origin
 | |
| 
 | |
| 	// create an initial estimate for the lagrange multiplier
 | |
| 	shared_cfg initLagrange(new VectorConfig);
 | |
| 	initLagrange->insert("L_l1l2", Vector_(2, 1.0, 1.0));
 | |
| 	initLagrange->insert("L_x1", Vector_(2, 1.0, 1.0));
 | |
| 
 | |
| 	// create state config variables and initialize them
 | |
| 	VectorConfig state(*initialEstimate), state_lam(*initLagrange);
 | |
| 
 | |
| 	// optimization loop
 | |
| 	int maxIt = 1;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
|  		// linearize the graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		typedef FactorGraph<NonlinearFactor<VectorConfig> >::const_iterator const_iterator;
 | |
| 		typedef NonlinearConstraint<VectorConfig> NLConstraint;
 | |
| 		// iterate over all factors
 | |
| 		for (const_iterator factor = graph.begin(); factor < graph.end(); factor++) {
 | |
| 			const shared_c constraint = boost::shared_dynamic_cast<NLConstraint >(*factor);
 | |
| 			if (constraint == NULL) {
 | |
| 				// if a regular factor, linearize using the default linearization
 | |
| 				GaussianFactor::shared_ptr f = (*factor)->linearize(state);
 | |
| 				fg.push_back(f);
 | |
| 			} else {
 | |
| 				// if a constraint, linearize using the constraint method (2 configs)
 | |
| 				GaussianFactor::shared_ptr f, c;
 | |
| 				boost::tie(f,c) = constraint->linearize(state, state_lam);
 | |
| 				fg.push_back(f);
 | |
| 				fg.push_back(c);
 | |
| 			}
 | |
| 		}
 | |
| 		if (verbose) fg.print("Linearized graph");
 | |
| 
 | |
| 		// create an ordering
 | |
| 		Ordering ordering;
 | |
| 		ordering += "x1", "x2", "l1", "l2", "L_l1l2", "L_x1";
 | |
| 
 | |
| 		// optimize linear graph to get full delta config
 | |
| 		VectorConfig delta = fg.optimize(ordering).scale(-1.0);
 | |
| 		if (verbose) delta.print("Delta Config");
 | |
| 
 | |
| 		// update both state variables
 | |
| 		state = state.exmap(delta);
 | |
| 		if (verbose) state.print("newState");
 | |
| 		state_lam = state_lam.exmap(delta);
 | |
| 		if (verbose) state_lam.print("newStateLam");
 | |
| 	}
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected(feas);
 | |
| 	expected.insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("l2", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("x2", Vector_(2, 5.0, 6.0));
 | |
| 	CHECK(assert_equal(expected, state, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |