127 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Matlab
		
	
	
| %close all
 | |
| %clc
 | |
| 
 | |
| import gtsam.*;
 | |
| 
 | |
| %% Read data
 | |
| IMU_metadata = importdata(gtsam.findExampleDataFile('KittiEquivBiasedImu_metadata.txt'));
 | |
| IMU_data = importdata(gtsam.findExampleDataFile('KittiEquivBiasedImu.txt'));
 | |
| % Make text file column headers into struct fields
 | |
| IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
 | |
| IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
 | |
| 
 | |
| GPS_metadata = importdata(gtsam.findExampleDataFile('KittiGps_metadata.txt'));
 | |
| GPS_data = importdata(gtsam.findExampleDataFile('KittiGps.txt'));
 | |
| % Make text file column headers into struct fields
 | |
| GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2);
 | |
| GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2);
 | |
| 
 | |
| %% Convert GPS from lat/long to meters
 | |
| [ x, y, ~ ] = deg2utm( [GPS_data.Latitude], [GPS_data.Longitude] );
 | |
| for i = 1:numel(x)
 | |
|     GPS_data(i).Position = gtsam.Point3(x(i), y(i), GPS_data(i).Altitude);
 | |
| end
 | |
| 
 | |
| % % Calculate GPS sigma in meters
 | |
| % [ xSig, ySig, ~ ] = deg2utm( [GPS_data.Latitude] + [GPS_data.PositionSigma], ...
 | |
| %     [GPS_data.Longitude] + [GPS_data.PositionSigma]);
 | |
| % xSig = xSig - x;
 | |
| % ySig = ySig - y;
 | |
| 
 | |
| %% Start at time of first GPS measurement
 | |
| firstGPSPose = 2;
 | |
|   
 | |
| %% Get initial conditions for the estimated trajectory
 | |
| currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame)
 | |
| currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
 | |
| currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
 | |
| 
 | |
| %% Solver object
 | |
| isamParams = ISAM2Params;
 | |
| isamParams.setFactorization('QR');
 | |
| isamParams.setRelinearizeSkip(1);
 | |
| isam = gtsam.ISAM2(isamParams);
 | |
| newFactors = NonlinearFactorGraph;
 | |
| newValues = Values;
 | |
| 
 | |
| %% Create initial estimate and prior on initial pose, velocity, and biases
 | |
| newValues.insert(symbol('x',firstGPSPose), currentPoseGlobal);
 | |
| newValues.insert(symbol('v',firstGPSPose), currentVelocityGlobal);
 | |
| newValues.insert(symbol('b',1), currentBias);
 | |
| 
 | |
| sigma_init_x = noiseModel.Diagonal.Precisions([0;0;0; 1;1;1]);
 | |
| sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
 | |
| sigma_init_b = noiseModel.Isotropic.Sigma(6, 0.01);
 | |
| 
 | |
| newFactors.add(PriorFactorPose3(symbol('x',firstGPSPose), currentPoseGlobal, sigma_init_x));
 | |
| newFactors.add(PriorFactorLieVector(symbol('v',firstGPSPose), currentVelocityGlobal, sigma_init_v));
 | |
| newFactors.add(PriorFactorConstantBias(symbol('b',1), currentBias, sigma_init_b));
 | |
| 
 | |
| %% Main loop:
 | |
| % (1) we read the measurements
 | |
| % (2) we create the corresponding factors in the graph
 | |
| % (3) we solve the graph to obtain and optimal estimate of robot trajectory
 | |
| 
 | |
| for poseIndex = firstGPSPose:length(GPS_data)
 | |
|   % At each non=IMU measurement we initialize a new node in the graph
 | |
|   currentPoseKey = symbol('x',poseIndex);
 | |
|   currentVelKey = symbol('v',poseIndex);
 | |
|   currentBiasKey = symbol('b',1);
 | |
| 
 | |
|   if poseIndex > firstGPSPose
 | |
|       % Summarize IMU data between the previous GPS measurement and now
 | |
|       IMUindices = find([IMU_data.Time] > GPS_data(poseIndex-1).Time ...
 | |
|           & [IMU_data.Time] <= GPS_data(poseIndex).Time);
 | |
|       
 | |
|       currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
 | |
|           currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
 | |
|           IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
 | |
|       
 | |
|       for imuIndex = IMUindices
 | |
|           accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
 | |
|           omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
 | |
|           deltaT = IMU_data(imuIndex).dt;
 | |
|           currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
 | |
|       end
 | |
|       
 | |
|       % Create IMU factor
 | |
|       newFactors.add(ImuFactor( ...
 | |
|           currentPoseKey-1, currentVelKey-1, ...
 | |
|           currentPoseKey, currentVelKey, ...
 | |
|           currentBiasKey, currentSummarizedMeasurement, [0;0;-9.8], [0;0;0]));
 | |
|       
 | |
|       % Create GPS factor
 | |
|       newFactors.add(PriorFactorPose3(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(poseIndex).Position), ...
 | |
|           noiseModel.Diagonal.Precisions([ zeros(3,1); 1./(GPS_data(poseIndex).PositionSigma).^2*ones(3,1) ])));
 | |
|       
 | |
|       % Add initial value
 | |
|       newValues.insert(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(poseIndex).Position));
 | |
|       newValues.insert(currentVelKey, currentVelocityGlobal);
 | |
|       %newValues.insert(currentBiasKey, currentBias);
 | |
| 
 | |
|       % Update solver
 | |
|       % =======================================================================
 | |
|       isam.update(newFactors, newValues);
 | |
|       newFactors = NonlinearFactorGraph;
 | |
|       newValues = Values;
 | |
| 
 | |
|       cla;
 | |
|       plot3DTrajectory(isam.calculateEstimate, 'g-');
 | |
|       drawnow;
 | |
|       % =======================================================================
 | |
|       
 | |
|       currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
 | |
|       currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
 | |
|       currentBias = isam.calculateEstimate(currentBiasKey);
 | |
|       
 | |
|   end
 | |
| end
 | |
| 
 | |
| disp('TODO: display results')
 | |
| % figure(1)
 | |
| % hold on;
 | |
| % plot(positions(1,:), positions(2,:), '-b');
 | |
| % plot3DTrajectory(isam.calculateEstimate, 'g-');
 | |
| % axis equal;
 | |
| % legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')
 |