77 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Read Stereo Visual Odometry from file and optimize
 | |
| % @author Chris Beall
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| import gtsam.*
 | |
| 
 | |
| %% Load calibration
 | |
| % format: fx fy skew cx cy baseline
 | |
| calib = dlmread(findExampleDataFile('VO_calibration.txt'));
 | |
| K = Cal3_S2Stereo(calib(1), calib(2), calib(3), calib(4), calib(5), calib(6));
 | |
| stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0]);
 | |
| 
 | |
| %% create empty graph and values
 | |
| graph = NonlinearFactorGraph;
 | |
| initial = Values;
 | |
| 
 | |
| 
 | |
| %% load the initial poses from VO
 | |
| % row format: camera_id 4x4 pose (row, major)
 | |
| fprintf(1,'Reading data\n');
 | |
| cameras = dlmread(findExampleDataFile('VO_camera_poses_large.txt'));
 | |
| for i=1:size(cameras,1)
 | |
|     pose = Pose3(reshape(cameras(i,2:17),4,4)');
 | |
|     initial.insert(symbol('x',cameras(i,1)),pose);
 | |
| end
 | |
| 
 | |
| %% load stereo measurements and initialize landmarks
 | |
| % camera_id landmark_id uL uR v X Y Z
 | |
| measurements = dlmread(findExampleDataFile('VO_stereo_factors_large.txt'));
 | |
| 
 | |
| fprintf(1,'Creating Graph\n'); tic
 | |
| for i=1:size(measurements,1)
 | |
|     sf = measurements(i,:);
 | |
|     graph.add(GenericStereoFactor3D(StereoPoint2(sf(3),sf(4),sf(5)), stereo_model, ...
 | |
|         symbol('x', sf(1)), symbol('l', sf(2)), K));
 | |
|     
 | |
|     if ~initial.exists(symbol('l',sf(2)))
 | |
|         % 3D landmarks are stored in camera coordinates: transform
 | |
|         % to world coordinates using the respective initial pose
 | |
|         pose = initial.atPose3(symbol('x', sf(1)));
 | |
|         world_point = pose.transformFrom(Point3(sf(6),sf(7),sf(8)));
 | |
|         initial.insert(symbol('l',sf(2)), world_point);
 | |
|     end
 | |
| end
 | |
| toc
 | |
| 
 | |
| %% add a constraint on the starting pose
 | |
| key = symbol('x',1);
 | |
| first_pose = initial.atPose3(key);
 | |
| graph.add(NonlinearEqualityPose3(key, first_pose));
 | |
| 
 | |
| %% optimize
 | |
| fprintf(1,'Optimizing\n'); tic
 | |
| optimizer = LevenbergMarquardtOptimizer(graph, initial);
 | |
| result = optimizer.optimizeSafely();
 | |
| toc
 | |
| 
 | |
| %% visualize initial trajectory, final trajectory, and final points
 | |
| cla; hold on;
 | |
| 
 | |
| plot3DTrajectory(initial, 'r', 1, 0.5);
 | |
| plot3DTrajectory(result, 'g', 1, 0.5);
 | |
| plot3DPoints(result);
 | |
| 
 | |
| axis([-5 20 -20 20 0 100]);
 | |
| axis equal
 | |
| view(3)
 | |
| camup([0;1;0]);
 |