444 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			444 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  testNonlinearFactor.cpp
 | |
|  *  @brief Unit tests for Non-Linear Factor,
 | |
|  *  create a non linear factor graph and a values structure for it and
 | |
|  *  calculate the error for the factor.
 | |
|  *  @author Christian Potthast
 | |
|  **/
 | |
| 
 | |
| /*STL/C++*/
 | |
| #include <iostream>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| // TODO: DANGEROUS, create shared pointers
 | |
| #define GTSAM_MAGIC_GAUSSIAN 2
 | |
| 
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| #include <tests/smallExample.h>
 | |
| #include <tests/simulated2D.h>
 | |
| #include <gtsam/linear/GaussianFactor.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| typedef boost::shared_ptr<NonlinearFactor > shared_nlf;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, equals )
 | |
| {
 | |
|   SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2,1.0));
 | |
| 
 | |
|   // create two nonlinear2 factors
 | |
|   Point2 z3(0.,-1.);
 | |
|   simulated2D::Measurement f0(z3, sigma, X(1),L(1));
 | |
| 
 | |
|   // measurement between x2 and l1
 | |
|   Point2 z4(-1.5, -1.);
 | |
|   simulated2D::Measurement f1(z4, sigma, X(2),L(1));
 | |
| 
 | |
|   CHECK(assert_equal(f0,f0));
 | |
|   CHECK(f0.equals(f0));
 | |
|   CHECK(!f0.equals(f1));
 | |
|   CHECK(!f1.equals(f0));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, equals2 )
 | |
| {
 | |
|   // create a non linear factor graph
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
| 
 | |
|   // get two factors
 | |
|   NonlinearFactorGraph::sharedFactor f0 = fg[0], f1 = fg[1];
 | |
| 
 | |
|   CHECK(f0->equals(*f0));
 | |
|   CHECK(!f0->equals(*f1));
 | |
|   CHECK(!f1->equals(*f0));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, NonlinearFactor )
 | |
| {
 | |
|   // create a non linear factor graph
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
| 
 | |
|   // create a values structure for the non linear factor graph
 | |
|   Values cfg = createNoisyValues();
 | |
| 
 | |
|   // get the factor "f1" from the factor graph
 | |
|   NonlinearFactorGraph::sharedFactor factor = fg[0];
 | |
| 
 | |
|   // calculate the error_vector from the factor "f1"
 | |
|   // error_vector = [0.1 0.1]
 | |
|   Vector actual_e = boost::dynamic_pointer_cast<NoiseModelFactor>(factor)->unwhitenedError(cfg);
 | |
|   CHECK(assert_equal(0.1*Vector::Ones(2),actual_e));
 | |
| 
 | |
|   // error = 0.5 * [1 1] * [1;1] = 1
 | |
|   double expected = 1.0;
 | |
| 
 | |
|   // calculate the error from the factor "f1"
 | |
|   double actual = factor->error(cfg);
 | |
|   DOUBLES_EQUAL(expected,actual,0.00000001);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f1 )
 | |
| {
 | |
|   Values c = createNoisyValues();
 | |
| 
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[0];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[0];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| 
 | |
|   // The error |A*dx-b| approximates (h(x0+dx)-z) = -error_vector
 | |
|   // Hence i.e., b = approximates z-h(x0) = error_vector(x0)
 | |
|   //CHECK(assert_equal(nlf->error_vector(c),actual->get_b()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f2 )
 | |
| {
 | |
|   Values c = createNoisyValues();
 | |
| 
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[1];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[1];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f3 )
 | |
| {
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[2];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   Values c = createNoisyValues();
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[2];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f4 )
 | |
| {
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[3];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   Values c = createNoisyValues();
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[3];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, size )
 | |
| {
 | |
|   // create a non linear factor graph
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
| 
 | |
|   // create a values structure for the non linear factor graph
 | |
|   Values cfg = createNoisyValues();
 | |
| 
 | |
|   // get some factors from the graph
 | |
|   NonlinearFactorGraph::sharedFactor factor1 = fg[0], factor2 = fg[1],
 | |
|       factor3 = fg[2];
 | |
| 
 | |
|   CHECK(factor1->size() == 1);
 | |
|   CHECK(factor2->size() == 2);
 | |
|   CHECK(factor3->size() == 2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_constraint1 )
 | |
| {
 | |
|   SharedDiagonal constraint = noiseModel::Constrained::MixedSigmas(Vector2(0.2,0));
 | |
| 
 | |
|   Point2 mu(1., -1.);
 | |
|   NonlinearFactorGraph::sharedFactor f0(new simulated2D::Prior(mu, constraint, X(1)));
 | |
| 
 | |
|   Values config;
 | |
|   config.insert(X(1), Point2(1.0, 2.0));
 | |
|   GaussianFactor::shared_ptr actual = f0->linearize(config);
 | |
| 
 | |
|   // create expected
 | |
|   Vector2 b(0., -3.);
 | |
|   JacobianFactor expected(X(1), (Matrix(2, 2) << 5.0, 0.0, 0.0, 1.0).finished(), b,
 | |
|     noiseModel::Constrained::MixedSigmas(Vector2(1,0)));
 | |
|   CHECK(assert_equal((const GaussianFactor&)expected, *actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_constraint2 )
 | |
| {
 | |
|   SharedDiagonal constraint = noiseModel::Constrained::MixedSigmas(Vector2(0.2,0));
 | |
| 
 | |
|   Point2 z3(1.,-1.);
 | |
|   simulated2D::Measurement f0(z3, constraint, X(1),L(1));
 | |
| 
 | |
|   Values config;
 | |
|   config.insert(X(1), Point2(1.0, 2.0));
 | |
|   config.insert(L(1), Point2(5.0, 4.0));
 | |
|   GaussianFactor::shared_ptr actual = f0.linearize(config);
 | |
| 
 | |
|   // create expected
 | |
|   Matrix2 A; A << 5.0, 0.0, 0.0, 1.0;
 | |
|   Vector2 b(-15., -3.);
 | |
|   JacobianFactor expected(X(1), -1*A, L(1), A, b,
 | |
|     noiseModel::Constrained::MixedSigmas(Vector2(1,0)));
 | |
|   CHECK(assert_equal((const GaussianFactor&)expected, *actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, cloneWithNewNoiseModel )
 | |
| {
 | |
|   // create original factor
 | |
|   double sigma1 = 0.1;
 | |
|   NonlinearFactorGraph nfg = example::nonlinearFactorGraphWithGivenSigma(sigma1);
 | |
| 
 | |
|   // create expected
 | |
|   double sigma2 = 10;
 | |
|   NonlinearFactorGraph expected = example::nonlinearFactorGraphWithGivenSigma(sigma2);
 | |
| 
 | |
|   // create actual
 | |
|   NonlinearFactorGraph actual;
 | |
|   SharedNoiseModel noise2 = noiseModel::Isotropic::Sigma(2,sigma2);
 | |
|   actual.push_back( boost::dynamic_pointer_cast<NoiseModelFactor>(nfg[0])->cloneWithNewNoiseModel(noise2) );
 | |
| 
 | |
|   // check it's all good
 | |
|   CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactor4 : public NoiseModelFactor4<double, double, double, double> {
 | |
| public:
 | |
|   typedef NoiseModelFactor4<double, double, double, double> Base;
 | |
|   TestFactor4() : Base(noiseModel::Diagonal::Sigmas((Vector(1) << 2.0).finished()), X(1), X(2), X(3), X(4)) {}
 | |
| 
 | |
|   Vector
 | |
|     evaluateError(const double& x1, const double& x2, const double& x3, const double& x4,
 | |
|         boost::optional<Matrix&> H1 = boost::none,
 | |
|         boost::optional<Matrix&> H2 = boost::none,
 | |
|         boost::optional<Matrix&> H3 = boost::none,
 | |
|         boost::optional<Matrix&> H4 = boost::none) const override {
 | |
|     if(H1) {
 | |
|       *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|       *H2 = (Matrix(1, 1) << 2.0).finished();
 | |
|       *H3 = (Matrix(1, 1) << 3.0).finished();
 | |
|       *H4 = (Matrix(1, 1) << 4.0).finished();
 | |
|     }
 | |
|     return (Vector(1) << x1 + x2 + x3 + x4).finished();
 | |
|   }
 | |
| 
 | |
|   gtsam::NonlinearFactor::shared_ptr clone() const override {
 | |
|     return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | |
|         gtsam::NonlinearFactor::shared_ptr(new TestFactor4(*this))); }
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactor4) {
 | |
|   TestFactor4 tf;
 | |
|   Values tv;
 | |
|   tv.insert(X(1), double((1.0)));
 | |
|   tv.insert(X(2), double((2.0)));
 | |
|   tv.insert(X(3), double((3.0)));
 | |
|   tv.insert(X(4), double((4.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 10.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(25.0/2.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)X(1), (long)jf.keys()[0]);
 | |
|   LONGS_EQUAL((long)X(2), (long)jf.keys()[1]);
 | |
|   LONGS_EQUAL((long)X(3), (long)jf.keys()[2]);
 | |
|   LONGS_EQUAL((long)X(4), (long)jf.keys()[3]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(), jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.0).finished(), jf.getA(jf.begin()+1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.5).finished(), jf.getA(jf.begin()+2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.0).finished(), jf.getA(jf.begin()+3)));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << -5.0).finished(), jf.getb()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactor5 : public NoiseModelFactor5<double, double, double, double, double> {
 | |
| public:
 | |
|   typedef NoiseModelFactor5<double, double, double, double, double> Base;
 | |
|   TestFactor5() : Base(noiseModel::Diagonal::Sigmas((Vector(1) << 2.0).finished()), X(1), X(2), X(3), X(4), X(5)) {}
 | |
| 
 | |
|   Vector
 | |
|     evaluateError(const X1& x1, const X2& x2, const X3& x3, const X4& x4, const X5& x5,
 | |
|         boost::optional<Matrix&> H1 = boost::none,
 | |
|         boost::optional<Matrix&> H2 = boost::none,
 | |
|         boost::optional<Matrix&> H3 = boost::none,
 | |
|         boost::optional<Matrix&> H4 = boost::none,
 | |
|         boost::optional<Matrix&> H5 = boost::none) const override {
 | |
|     if(H1) {
 | |
|       *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|       *H2 = (Matrix(1, 1) << 2.0).finished();
 | |
|       *H3 = (Matrix(1, 1) << 3.0).finished();
 | |
|       *H4 = (Matrix(1, 1) << 4.0).finished();
 | |
|       *H5 = (Matrix(1, 1) << 5.0).finished();
 | |
|     }
 | |
|     return (Vector(1) << x1 + x2 + x3 + x4 + x5).finished();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactor5) {
 | |
|   TestFactor5 tf;
 | |
|   Values tv;
 | |
|   tv.insert(X(1), double((1.0)));
 | |
|   tv.insert(X(2), double((2.0)));
 | |
|   tv.insert(X(3), double((3.0)));
 | |
|   tv.insert(X(4), double((4.0)));
 | |
|   tv.insert(X(5), double((5.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 15.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(56.25/2.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)X(1), (long)jf.keys()[0]);
 | |
|   LONGS_EQUAL((long)X(2), (long)jf.keys()[1]);
 | |
|   LONGS_EQUAL((long)X(3), (long)jf.keys()[2]);
 | |
|   LONGS_EQUAL((long)X(4), (long)jf.keys()[3]);
 | |
|   LONGS_EQUAL((long)X(5), (long)jf.keys()[4]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(), jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.0).finished(), jf.getA(jf.begin()+1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.5).finished(), jf.getA(jf.begin()+2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.0).finished(), jf.getA(jf.begin()+3)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.5).finished(), jf.getA(jf.begin()+4)));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << -7.5).finished(), jf.getb()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactor6 : public NoiseModelFactor6<double, double, double, double, double, double> {
 | |
| public:
 | |
|   typedef NoiseModelFactor6<double, double, double, double, double, double> Base;
 | |
|   TestFactor6() : Base(noiseModel::Diagonal::Sigmas((Vector(1) << 2.0).finished()), X(1), X(2), X(3), X(4), X(5), X(6)) {}
 | |
| 
 | |
|   Vector
 | |
|     evaluateError(const X1& x1, const X2& x2, const X3& x3, const X4& x4, const X5& x5, const X6& x6,
 | |
|         boost::optional<Matrix&> H1 = boost::none,
 | |
|         boost::optional<Matrix&> H2 = boost::none,
 | |
|         boost::optional<Matrix&> H3 = boost::none,
 | |
|         boost::optional<Matrix&> H4 = boost::none,
 | |
|         boost::optional<Matrix&> H5 = boost::none,
 | |
|         boost::optional<Matrix&> H6 = boost::none) const override {
 | |
|     if(H1) {
 | |
|       *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|       *H2 = (Matrix(1, 1) << 2.0).finished();
 | |
|       *H3 = (Matrix(1, 1) << 3.0).finished();
 | |
|       *H4 = (Matrix(1, 1) << 4.0).finished();
 | |
|       *H5 = (Matrix(1, 1) << 5.0).finished();
 | |
|       *H6 = (Matrix(1, 1) << 6.0).finished();
 | |
|     }
 | |
|     return (Vector(1) << x1 + x2 + x3 + x4 + x5 + x6).finished();
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactor6) {
 | |
|   TestFactor6 tf;
 | |
|   Values tv;
 | |
|   tv.insert(X(1), double((1.0)));
 | |
|   tv.insert(X(2), double((2.0)));
 | |
|   tv.insert(X(3), double((3.0)));
 | |
|   tv.insert(X(4), double((4.0)));
 | |
|   tv.insert(X(5), double((5.0)));
 | |
|   tv.insert(X(6), double((6.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 21.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(110.25/2.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)X(1), (long)jf.keys()[0]);
 | |
|   LONGS_EQUAL((long)X(2), (long)jf.keys()[1]);
 | |
|   LONGS_EQUAL((long)X(3), (long)jf.keys()[2]);
 | |
|   LONGS_EQUAL((long)X(4), (long)jf.keys()[3]);
 | |
|   LONGS_EQUAL((long)X(5), (long)jf.keys()[4]);
 | |
|   LONGS_EQUAL((long)X(6), (long)jf.keys()[5]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(), jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.0).finished(), jf.getA(jf.begin()+1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.5).finished(), jf.getA(jf.begin()+2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.0).finished(), jf.getA(jf.begin()+3)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.5).finished(), jf.getA(jf.begin()+4)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 3.0).finished(), jf.getA(jf.begin()+5)));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << -10.5).finished(), jf.getb()));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, clone_rekey )
 | |
| {
 | |
|   shared_nlf init(new TestFactor4());
 | |
|   EXPECT_LONGS_EQUAL((long)X(1), (long)init->keys()[0]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(2), (long)init->keys()[1]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(3), (long)init->keys()[2]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(4), (long)init->keys()[3]);
 | |
| 
 | |
|   // Standard clone
 | |
|   shared_nlf actClone = init->clone();
 | |
|   EXPECT(actClone.get() != init.get()); // Ensure different pointers
 | |
|   EXPECT(assert_equal(*init, *actClone));
 | |
| 
 | |
|   // Re-key factor - clones with different keys
 | |
|   KeyVector new_keys {X(5),X(6),X(7),X(8)};
 | |
|   shared_nlf actRekey = init->rekey(new_keys);
 | |
|   EXPECT(actRekey.get() != init.get()); // Ensure different pointers
 | |
| 
 | |
|   // Ensure init is unchanged
 | |
|   EXPECT_LONGS_EQUAL((long)X(1), (long)init->keys()[0]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(2), (long)init->keys()[1]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(3), (long)init->keys()[2]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(4), (long)init->keys()[3]);
 | |
| 
 | |
|   // Check new keys
 | |
|   EXPECT_LONGS_EQUAL((long)X(5), (long)actRekey->keys()[0]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(6), (long)actRekey->keys()[1]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(7), (long)actRekey->keys()[2]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(8), (long)actRekey->keys()[3]);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |