gtsam/gtsam/3rdparty/Spectra/LinAlg/UpperHessenbergQR.h

671 lines
22 KiB
C++

// Copyright (C) 2016-2019 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef UPPER_HESSENBERG_QR_H
#define UPPER_HESSENBERG_QR_H
#include <Eigen/Core>
#include <cmath> // std::sqrt
#include <algorithm> // std::fill, std::copy
#include <stdexcept> // std::logic_error
namespace Spectra {
///
/// \defgroup Internals Internal Classes
///
/// Classes for internal use. May be useful to developers.
///
///
/// \ingroup Internals
/// @{
///
///
/// \defgroup LinearAlgebra Linear Algebra
///
/// A number of classes for linear algebra operations.
///
///
/// \ingroup LinearAlgebra
///
/// Perform the QR decomposition of an upper Hessenberg matrix.
///
/// \tparam Scalar The element type of the matrix.
/// Currently supported types are `float`, `double` and `long double`.
///
template <typename Scalar = double>
class UpperHessenbergQR
{
private:
typedef Eigen::Index Index;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
typedef Eigen::Matrix<Scalar, 1, Eigen::Dynamic> RowVector;
typedef Eigen::Array<Scalar, Eigen::Dynamic, 1> Array;
typedef Eigen::Ref<Matrix> GenericMatrix;
typedef const Eigen::Ref<const Matrix> ConstGenericMatrix;
Matrix m_mat_T;
protected:
Index m_n;
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
// Q = G1 * G2 * ... * G_{n-1}
Scalar m_shift;
Array m_rot_cos;
Array m_rot_sin;
bool m_computed;
// Given x and y, compute 1) r = sqrt(x^2 + y^2), 2) c = x / r, 3) s = -y / r
// If both x and y are zero, set c = 1 and s = 0
// We must implement it in a numerically stable way
static void compute_rotation(const Scalar& x, const Scalar& y, Scalar& r, Scalar& c, Scalar& s)
{
using std::sqrt;
const Scalar xsign = (x > Scalar(0)) - (x < Scalar(0));
const Scalar ysign = (y > Scalar(0)) - (y < Scalar(0));
const Scalar xabs = x * xsign;
const Scalar yabs = y * ysign;
if (xabs > yabs)
{
// In this case xabs != 0
const Scalar ratio = yabs / xabs; // so that 0 <= ratio < 1
const Scalar common = sqrt(Scalar(1) + ratio * ratio);
c = xsign / common;
r = xabs * common;
s = -y / r;
}
else
{
if (yabs == Scalar(0))
{
r = Scalar(0);
c = Scalar(1);
s = Scalar(0);
return;
}
const Scalar ratio = xabs / yabs; // so that 0 <= ratio <= 1
const Scalar common = sqrt(Scalar(1) + ratio * ratio);
s = -ysign / common;
r = yabs * common;
c = x / r;
}
}
public:
///
/// Constructor to preallocate memory. Computation can
/// be performed later by calling the compute() method.
///
UpperHessenbergQR(Index size) :
m_n(size),
m_rot_cos(m_n - 1),
m_rot_sin(m_n - 1),
m_computed(false)
{}
///
/// Constructor to create an object that performs and stores the
/// QR decomposition of an upper Hessenberg matrix `mat`, with an
/// optional shift: \f$H-sI=QR\f$. Here \f$H\f$ stands for the matrix
/// `mat`, and \f$s\f$ is the shift.
///
/// \param mat Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
/// Only the upper triangular and the lower subdiagonal parts of
/// the matrix are used.
///
UpperHessenbergQR(ConstGenericMatrix& mat, const Scalar& shift = Scalar(0)) :
m_n(mat.rows()),
m_shift(shift),
m_rot_cos(m_n - 1),
m_rot_sin(m_n - 1),
m_computed(false)
{
compute(mat, shift);
}
///
/// Virtual destructor.
///
virtual ~UpperHessenbergQR(){};
///
/// Conduct the QR factorization of an upper Hessenberg matrix with
/// an optional shift.
///
/// \param mat Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
/// Only the upper triangular and the lower subdiagonal parts of
/// the matrix are used.
///
virtual void compute(ConstGenericMatrix& mat, const Scalar& shift = Scalar(0))
{
m_n = mat.rows();
if (m_n != mat.cols())
throw std::invalid_argument("UpperHessenbergQR: matrix must be square");
m_shift = shift;
m_mat_T.resize(m_n, m_n);
m_rot_cos.resize(m_n - 1);
m_rot_sin.resize(m_n - 1);
// Make a copy of mat - s * I
std::copy(mat.data(), mat.data() + mat.size(), m_mat_T.data());
m_mat_T.diagonal().array() -= m_shift;
Scalar xi, xj, r, c, s;
Scalar *Tii, *ptr;
const Index n1 = m_n - 1;
for (Index i = 0; i < n1; i++)
{
Tii = &m_mat_T.coeffRef(i, i);
// Make sure mat_T is upper Hessenberg
// Zero the elements below mat_T(i + 1, i)
std::fill(Tii + 2, Tii + m_n - i, Scalar(0));
xi = Tii[0]; // mat_T(i, i)
xj = Tii[1]; // mat_T(i + 1, i)
compute_rotation(xi, xj, r, c, s);
m_rot_cos[i] = c;
m_rot_sin[i] = s;
// For a complete QR decomposition,
// we first obtain the rotation matrix
// G = [ cos sin]
// [-sin cos]
// and then do T[i:(i + 1), i:(n - 1)] = G' * T[i:(i + 1), i:(n - 1)]
// Gt << c, -s, s, c;
// m_mat_T.block(i, i, 2, m_n - i) = Gt * m_mat_T.block(i, i, 2, m_n - i);
Tii[0] = r; // m_mat_T(i, i) => r
Tii[1] = 0; // m_mat_T(i + 1, i) => 0
ptr = Tii + m_n; // m_mat_T(i, k), k = i+1, i+2, ..., n-1
for (Index j = i + 1; j < m_n; j++, ptr += m_n)
{
Scalar tmp = ptr[0];
ptr[0] = c * tmp - s * ptr[1];
ptr[1] = s * tmp + c * ptr[1];
}
// If we do not need to calculate the R matrix, then
// only the cos and sin sequences are required.
// In such case we only update T[i + 1, (i + 1):(n - 1)]
// m_mat_T.block(i + 1, i + 1, 1, m_n - i - 1) *= c;
// m_mat_T.block(i + 1, i + 1, 1, m_n - i - 1) += s * mat_T.block(i, i + 1, 1, m_n - i - 1);
}
m_computed = true;
}
///
/// Return the \f$R\f$ matrix in the QR decomposition, which is an
/// upper triangular matrix.
///
/// \return Returned matrix type will be `Eigen::Matrix<Scalar, ...>`, depending on
/// the template parameter `Scalar` defined.
///
virtual Matrix matrix_R() const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
return m_mat_T;
}
///
/// Overwrite `dest` with \f$Q'HQ = RQ + sI\f$, where \f$H\f$ is the input matrix `mat`,
/// and \f$s\f$ is the shift. The result is an upper Hessenberg matrix.
///
/// \param mat The matrix to be overwritten, whose type should be `Eigen::Matrix<Scalar, ...>`,
/// depending on the template parameter `Scalar` defined.
///
virtual void matrix_QtHQ(Matrix& dest) const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
// Make a copy of the R matrix
dest.resize(m_n, m_n);
std::copy(m_mat_T.data(), m_mat_T.data() + m_mat_T.size(), dest.data());
// Compute the RQ matrix
const Index n1 = m_n - 1;
for (Index i = 0; i < n1; i++)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
// RQ[, i:(i + 1)] = RQ[, i:(i + 1)] * Gi
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
Scalar *Yi, *Yi1;
Yi = &dest.coeffRef(0, i);
Yi1 = Yi + m_n; // RQ(0, i + 1)
const Index i2 = i + 2;
for (Index j = 0; j < i2; j++)
{
const Scalar tmp = Yi[j];
Yi[j] = c * tmp - s * Yi1[j];
Yi1[j] = s * tmp + c * Yi1[j];
}
/* Vector dest = RQ.block(0, i, i + 2, 1);
dest.block(0, i, i + 2, 1) = c * Yi - s * dest.block(0, i + 1, i + 2, 1);
dest.block(0, i + 1, i + 2, 1) = s * Yi + c * dest.block(0, i + 1, i + 2, 1); */
}
// Add the shift to the diagonal
dest.diagonal().array() += m_shift;
}
///
/// Apply the \f$Q\f$ matrix to a vector \f$y\f$.
///
/// \param Y A vector that will be overwritten by the matrix product \f$Qy\f$.
///
/// Vector type can be `Eigen::Vector<Scalar, ...>`, depending on
/// the template parameter `Scalar` defined.
///
// Y -> QY = G1 * G2 * ... * Y
void apply_QY(Vector& Y) const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
for (Index i = m_n - 2; i >= 0; i--)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
// Y[i:(i + 1)] = Gi * Y[i:(i + 1)]
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
const Scalar tmp = Y[i];
Y[i] = c * tmp + s * Y[i + 1];
Y[i + 1] = -s * tmp + c * Y[i + 1];
}
}
///
/// Apply the \f$Q\f$ matrix to a vector \f$y\f$.
///
/// \param Y A vector that will be overwritten by the matrix product \f$Q'y\f$.
///
/// Vector type can be `Eigen::Vector<Scalar, ...>`, depending on
/// the template parameter `Scalar` defined.
///
// Y -> Q'Y = G_{n-1}' * ... * G2' * G1' * Y
void apply_QtY(Vector& Y) const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
const Index n1 = m_n - 1;
for (Index i = 0; i < n1; i++)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
// Y[i:(i + 1)] = Gi' * Y[i:(i + 1)]
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
const Scalar tmp = Y[i];
Y[i] = c * tmp - s * Y[i + 1];
Y[i + 1] = s * tmp + c * Y[i + 1];
}
}
///
/// Apply the \f$Q\f$ matrix to another matrix \f$Y\f$.
///
/// \param Y A matrix that will be overwritten by the matrix product \f$QY\f$.
///
/// Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
///
// Y -> QY = G1 * G2 * ... * Y
void apply_QY(GenericMatrix Y) const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
RowVector Yi(Y.cols()), Yi1(Y.cols());
for (Index i = m_n - 2; i >= 0; i--)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
// Y[i:(i + 1), ] = Gi * Y[i:(i + 1), ]
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
Yi.noalias() = Y.row(i);
Yi1.noalias() = Y.row(i + 1);
Y.row(i) = c * Yi + s * Yi1;
Y.row(i + 1) = -s * Yi + c * Yi1;
}
}
///
/// Apply the \f$Q\f$ matrix to another matrix \f$Y\f$.
///
/// \param Y A matrix that will be overwritten by the matrix product \f$Q'Y\f$.
///
/// Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
///
// Y -> Q'Y = G_{n-1}' * ... * G2' * G1' * Y
void apply_QtY(GenericMatrix Y) const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
RowVector Yi(Y.cols()), Yi1(Y.cols());
const Index n1 = m_n - 1;
for (Index i = 0; i < n1; i++)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
// Y[i:(i + 1), ] = Gi' * Y[i:(i + 1), ]
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
Yi.noalias() = Y.row(i);
Yi1.noalias() = Y.row(i + 1);
Y.row(i) = c * Yi - s * Yi1;
Y.row(i + 1) = s * Yi + c * Yi1;
}
}
///
/// Apply the \f$Q\f$ matrix to another matrix \f$Y\f$.
///
/// \param Y A matrix that will be overwritten by the matrix product \f$YQ\f$.
///
/// Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
///
// Y -> YQ = Y * G1 * G2 * ...
void apply_YQ(GenericMatrix Y) const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
/*Vector Yi(Y.rows());
for(Index i = 0; i < m_n - 1; i++)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
// Y[, i:(i + 1)] = Y[, i:(i + 1)] * Gi
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
Yi.noalias() = Y.col(i);
Y.col(i) = c * Yi - s * Y.col(i + 1);
Y.col(i + 1) = s * Yi + c * Y.col(i + 1);
}*/
Scalar *Y_col_i, *Y_col_i1;
const Index n1 = m_n - 1;
const Index nrow = Y.rows();
for (Index i = 0; i < n1; i++)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
Y_col_i = &Y.coeffRef(0, i);
Y_col_i1 = &Y.coeffRef(0, i + 1);
for (Index j = 0; j < nrow; j++)
{
Scalar tmp = Y_col_i[j];
Y_col_i[j] = c * tmp - s * Y_col_i1[j];
Y_col_i1[j] = s * tmp + c * Y_col_i1[j];
}
}
}
///
/// Apply the \f$Q\f$ matrix to another matrix \f$Y\f$.
///
/// \param Y A matrix that will be overwritten by the matrix product \f$YQ'\f$.
///
/// Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
///
// Y -> YQ' = Y * G_{n-1}' * ... * G2' * G1'
void apply_YQt(GenericMatrix Y) const
{
if (!m_computed)
throw std::logic_error("UpperHessenbergQR: need to call compute() first");
Vector Yi(Y.rows());
for (Index i = m_n - 2; i >= 0; i--)
{
const Scalar c = m_rot_cos.coeff(i);
const Scalar s = m_rot_sin.coeff(i);
// Y[, i:(i + 1)] = Y[, i:(i + 1)] * Gi'
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
Yi.noalias() = Y.col(i);
Y.col(i) = c * Yi + s * Y.col(i + 1);
Y.col(i + 1) = -s * Yi + c * Y.col(i + 1);
}
}
};
///
/// \ingroup LinearAlgebra
///
/// Perform the QR decomposition of a tridiagonal matrix, a special
/// case of upper Hessenberg matrices.
///
/// \tparam Scalar The element type of the matrix.
/// Currently supported types are `float`, `double` and `long double`.
///
template <typename Scalar = double>
class TridiagQR : public UpperHessenbergQR<Scalar>
{
private:
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
typedef const Eigen::Ref<const Matrix> ConstGenericMatrix;
typedef typename Matrix::Index Index;
Vector m_T_diag; // diagonal elements of T
Vector m_T_lsub; // lower subdiagonal of T
Vector m_T_usub; // upper subdiagonal of T
Vector m_T_usub2; // 2nd upper subdiagonal of T
public:
///
/// Constructor to preallocate memory. Computation can
/// be performed later by calling the compute() method.
///
TridiagQR(Index size) :
UpperHessenbergQR<Scalar>(size)
{}
///
/// Constructor to create an object that performs and stores the
/// QR decomposition of an upper Hessenberg matrix `mat`, with an
/// optional shift: \f$H-sI=QR\f$. Here \f$H\f$ stands for the matrix
/// `mat`, and \f$s\f$ is the shift.
///
/// \param mat Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
/// Only the major- and sub- diagonal parts of
/// the matrix are used.
///
TridiagQR(ConstGenericMatrix& mat, const Scalar& shift = Scalar(0)) :
UpperHessenbergQR<Scalar>(mat.rows())
{
this->compute(mat, shift);
}
///
/// Conduct the QR factorization of a tridiagonal matrix with an
/// optional shift.
///
/// \param mat Matrix type can be `Eigen::Matrix<Scalar, ...>` (e.g.
/// `Eigen::MatrixXd` and `Eigen::MatrixXf`), or its mapped version
/// (e.g. `Eigen::Map<Eigen::MatrixXd>`).
/// Only the major- and sub- diagonal parts of
/// the matrix are used.
///
void compute(ConstGenericMatrix& mat, const Scalar& shift = Scalar(0))
{
this->m_n = mat.rows();
if (this->m_n != mat.cols())
throw std::invalid_argument("TridiagQR: matrix must be square");
this->m_shift = shift;
m_T_diag.resize(this->m_n);
m_T_lsub.resize(this->m_n - 1);
m_T_usub.resize(this->m_n - 1);
m_T_usub2.resize(this->m_n - 2);
this->m_rot_cos.resize(this->m_n - 1);
this->m_rot_sin.resize(this->m_n - 1);
m_T_diag.array() = mat.diagonal().array() - this->m_shift;
m_T_lsub.noalias() = mat.diagonal(-1);
m_T_usub.noalias() = m_T_lsub;
// A number of pointers to avoid repeated address calculation
Scalar *c = this->m_rot_cos.data(), // pointer to the cosine vector
*s = this->m_rot_sin.data(), // pointer to the sine vector
r;
const Index n1 = this->m_n - 1;
for (Index i = 0; i < n1; i++)
{
// diag[i] == T[i, i]
// lsub[i] == T[i + 1, i]
// r = sqrt(T[i, i]^2 + T[i + 1, i]^2)
// c = T[i, i] / r, s = -T[i + 1, i] / r
this->compute_rotation(m_T_diag.coeff(i), m_T_lsub.coeff(i), r, *c, *s);
// For a complete QR decomposition,
// we first obtain the rotation matrix
// G = [ cos sin]
// [-sin cos]
// and then do T[i:(i + 1), i:(i + 2)] = G' * T[i:(i + 1), i:(i + 2)]
// Update T[i, i] and T[i + 1, i]
// The updated value of T[i, i] is known to be r
// The updated value of T[i + 1, i] is known to be 0
m_T_diag.coeffRef(i) = r;
m_T_lsub.coeffRef(i) = Scalar(0);
// Update T[i, i + 1] and T[i + 1, i + 1]
// usub[i] == T[i, i + 1]
// diag[i + 1] == T[i + 1, i + 1]
const Scalar tmp = m_T_usub.coeff(i);
m_T_usub.coeffRef(i) = (*c) * tmp - (*s) * m_T_diag.coeff(i + 1);
m_T_diag.coeffRef(i + 1) = (*s) * tmp + (*c) * m_T_diag.coeff(i + 1);
// Update T[i, i + 2] and T[i + 1, i + 2]
// usub2[i] == T[i, i + 2]
// usub[i + 1] == T[i + 1, i + 2]
if (i < n1 - 1)
{
m_T_usub2.coeffRef(i) = -(*s) * m_T_usub.coeff(i + 1);
m_T_usub.coeffRef(i + 1) *= (*c);
}
c++;
s++;
// If we do not need to calculate the R matrix, then
// only the cos and sin sequences are required.
// In such case we only update T[i + 1, (i + 1):(i + 2)]
// T[i + 1, i + 1] = c * T[i + 1, i + 1] + s * T[i, i + 1];
// T[i + 1, i + 2] *= c;
}
this->m_computed = true;
}
///
/// Return the \f$R\f$ matrix in the QR decomposition, which is an
/// upper triangular matrix.
///
/// \return Returned matrix type will be `Eigen::Matrix<Scalar, ...>`, depending on
/// the template parameter `Scalar` defined.
///
Matrix matrix_R() const
{
if (!this->m_computed)
throw std::logic_error("TridiagQR: need to call compute() first");
Matrix R = Matrix::Zero(this->m_n, this->m_n);
R.diagonal().noalias() = m_T_diag;
R.diagonal(1).noalias() = m_T_usub;
R.diagonal(2).noalias() = m_T_usub2;
return R;
}
///
/// Overwrite `dest` with \f$Q'HQ = RQ + sI\f$, where \f$H\f$ is the input matrix `mat`,
/// and \f$s\f$ is the shift. The result is a tridiagonal matrix.
///
/// \param mat The matrix to be overwritten, whose type should be `Eigen::Matrix<Scalar, ...>`,
/// depending on the template parameter `Scalar` defined.
///
void matrix_QtHQ(Matrix& dest) const
{
if (!this->m_computed)
throw std::logic_error("TridiagQR: need to call compute() first");
// Make a copy of the R matrix
dest.resize(this->m_n, this->m_n);
dest.setZero();
dest.diagonal().noalias() = m_T_diag;
// The upper diagonal refers to m_T_usub
// The 2nd upper subdiagonal will be zero in RQ
// Compute the RQ matrix
// [m11 m12] points to RQ[i:(i+1), i:(i+1)]
// [0 m22]
//
// Gi = [ cos[i] sin[i]]
// [-sin[i] cos[i]]
const Index n1 = this->m_n - 1;
for (Index i = 0; i < n1; i++)
{
const Scalar c = this->m_rot_cos.coeff(i);
const Scalar s = this->m_rot_sin.coeff(i);
const Scalar m11 = dest.coeff(i, i),
m12 = m_T_usub.coeff(i),
m22 = m_T_diag.coeff(i + 1);
// Update the diagonal and the lower subdiagonal of dest
dest.coeffRef(i, i) = c * m11 - s * m12;
dest.coeffRef(i + 1, i) = -s * m22;
dest.coeffRef(i + 1, i + 1) = c * m22;
}
// Copy the lower subdiagonal to upper subdiagonal
dest.diagonal(1).noalias() = dest.diagonal(-1);
// Add the shift to the diagonal
dest.diagonal().array() += this->m_shift;
}
};
///
/// @}
///
} // namespace Spectra
#endif // UPPER_HESSENBERG_QR_H