420 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file ProjectionFactor.h
 | |
|  * @brief Basic bearing factor from 2D measurement
 | |
|  * @author Chris Beall
 | |
|  * @author Luca Carlone
 | |
|  * @author Zsolt Kira
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/geometry/PinholeCamera.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <vector>
 | |
| #include <gtsam_unstable/geometry/triangulation.h>
 | |
| #include <boost/optional.hpp>
 | |
| #include <boost/assign.hpp>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /**
 | |
|    * The calibration is known here.
 | |
|    * @addtogroup SLAM
 | |
|    */
 | |
|   template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
 | |
|   class SmartProjectionFactor: public NonlinearFactor {
 | |
|   protected:
 | |
| 
 | |
|     // Keep a copy of measurement and calibration for I/O
 | |
|     std::vector<Point2> measured_;                    ///< 2D measurement for each of the m views
 | |
|     ///< (important that the order is the same as the keys that we use to create the factor)
 | |
|     boost::shared_ptr<CALIBRATION> K_;  ///< shared pointer to calibration object
 | |
|     const SharedNoiseModel noise_;   ///< noise model used
 | |
|     boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
 | |
| 
 | |
| 
 | |
| 
 | |
|     // verbosity handling for Cheirality Exceptions
 | |
|     bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
 | |
|     bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     /// shorthand for base class type
 | |
|     typedef NonlinearFactor Base;
 | |
| 
 | |
|     /// shorthand for this class
 | |
|     typedef SmartProjectionFactor<POSE, LANDMARK, CALIBRATION> This;
 | |
| 
 | |
|     /// shorthand for a smart pointer to a factor
 | |
|     typedef boost::shared_ptr<This> shared_ptr;
 | |
| 
 | |
|     /// Default constructor
 | |
|     SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {}
 | |
| 
 | |
|     /**
 | |
|      * Constructor
 | |
|      * TODO: Mark argument order standard (keys, measurement, parameters)
 | |
|      * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements)
 | |
|      * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
 | |
|      * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
 | |
|      * @param K shared pointer to the constant calibration
 | |
|      * @param body_P_sensor is the transform from body to sensor frame (default identity)
 | |
|      */
 | |
|     SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
 | |
|         std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
 | |
|         boost::optional<POSE> body_P_sensor = boost::none) :
 | |
|           measured_(measured),  K_(K), noise_(model), body_P_sensor_(body_P_sensor),
 | |
|           throwCheirality_(false), verboseCheirality_(false) {
 | |
|       keys_.assign(poseKeys.begin(), poseKeys.end());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Constructor with exception-handling flags
 | |
|      * TODO: Mark argument order standard (keys, measurement, parameters)
 | |
|      * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements)
 | |
|      * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
 | |
|      * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
 | |
|      * @param K shared pointer to the constant calibration
 | |
|      * @param throwCheirality determines whether Cheirality exceptions are rethrown
 | |
|      * @param verboseCheirality determines whether exceptions are printed for Cheirality
 | |
|      * @param body_P_sensor is the transform from body to sensor frame  (default identity)
 | |
|      */
 | |
|     SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
 | |
|         std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
 | |
|         bool throwCheirality, bool verboseCheirality,
 | |
|         boost::optional<POSE> body_P_sensor = boost::none) :
 | |
|           measured_(measured),  K_(K),  noise_(model), body_P_sensor_(body_P_sensor),
 | |
|           throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {}
 | |
| 
 | |
|     /** Virtual destructor */
 | |
|     virtual ~SmartProjectionFactor() {}
 | |
| 
 | |
|     /// @return a deep copy of this factor
 | |
| //    virtual gtsam::NonlinearFactor::shared_ptr clone() const {
 | |
| //      return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | |
| //          gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
 | |
| 
 | |
|     /**
 | |
|      * print
 | |
|      * @param s optional string naming the factor
 | |
|      * @param keyFormatter optional formatter useful for printing Symbols
 | |
|      */
 | |
|     void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
|       std::cout << s << "SmartProjectionFactor, z = ";
 | |
|       BOOST_FOREACH(const Point2& p, measured_) {
 | |
|         std::cout << "measurement, p = "<< p << std::endl;
 | |
|       }
 | |
|       if(this->body_P_sensor_)
 | |
|         this->body_P_sensor_->print("  sensor pose in body frame: ");
 | |
|       Base::print("", keyFormatter);
 | |
|     }
 | |
| 
 | |
|     /// equals
 | |
|     virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
 | |
|       const This *e = dynamic_cast<const This*>(&p);
 | |
| 
 | |
|       bool areMeasurementsEqual = true;
 | |
|       for(size_t i = 0; i < measured_.size(); i++) {
 | |
|         if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false)
 | |
|           areMeasurementsEqual = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       return e
 | |
|           && Base::equals(p, tol)
 | |
|           && areMeasurementsEqual
 | |
|           && this->K_->equals(*e->K_, tol)
 | |
|           && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /// get the dimension of the factor (number of rows on linearization)
 | |
|     virtual size_t dim() const {
 | |
|         return 6*keys_.size();
 | |
|     }
 | |
| 
 | |
|     /// linearize returns a Hessianfactor that is an approximation of error(p)
 | |
|     virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values,  const Ordering& ordering) const {
 | |
| 
 | |
| //      std::cout.precision(20);
 | |
| 
 | |
| 
 | |
|       // Collect all poses (Cameras)
 | |
|       std::vector<Pose3> cameraPoses;
 | |
|       BOOST_FOREACH(const Key& k, keys_) {
 | |
|         if(body_P_sensor_)
 | |
|           cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
 | |
|         else
 | |
|           cameraPoses.push_back(values.at<Pose3>(k));
 | |
|       }
 | |
| 
 | |
|       // We triangulate the 3D position of the landmark
 | |
|       boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_);
 | |
| 
 | |
|       if (!point)
 | |
|         return HessianFactor::shared_ptr(new HessianFactor());
 | |
| 
 | |
|       std::cout << "point " << *point << std::endl;
 | |
|       std::vector<Matrix> Gs(keys_.size()*(keys_.size()+1)/2);
 | |
|       std::vector<Vector> gs(keys_.size());
 | |
|       double f = 0;
 | |
|       // fill in the keys
 | |
|       std::vector<Index> js;
 | |
|       BOOST_FOREACH(const Key& k, keys_) {
 | |
|         js += ordering[k];
 | |
|       }
 | |
| 
 | |
|       bool blockwise = false;
 | |
| 
 | |
| //      {
 | |
|         // ==========================================================================================================
 | |
|         std::vector<Matrix> Hx(keys_.size());
 | |
|         std::vector<Matrix> Hl(keys_.size());
 | |
|         std::vector<Vector> b(keys_.size());
 | |
| 
 | |
|         for(size_t i = 0; i < measured_.size(); i++) {
 | |
|           Pose3 pose = cameraPoses.at(i);
 | |
|           std::cout << "pose " << pose << std::endl;
 | |
|           PinholeCamera<CALIBRATION> camera(pose, *K_);
 | |
|           b.at(i) = ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
 | |
| //          std::cout << "b.at(i)  " << b.at(i)  << std::endl;
 | |
|         }
 | |
| 
 | |
|         // Shur complement trick
 | |
| 
 | |
|         // Allocate m^2 matrix blocks
 | |
|         std::vector< std::vector<Matrix> > Hxl(keys_.size(), std::vector<Matrix>( keys_.size()));
 | |
| 
 | |
|         // Allocate inv(Hl'Hl)
 | |
|         Matrix3 C = zeros(3,3);
 | |
|         for(size_t i1 = 0; i1 < keys_.size(); i1++) {
 | |
|           C += Hl.at(i1).transpose() * Hl.at(i1);
 | |
|         }
 | |
| //        std::cout << "Cnoinv"<< "=[" << Ctemp << "];" << std::endl;
 | |
| 
 | |
|         C = C.inverse().eval(); //  this is very important: without eval, because of eigen aliasing the results will be incorrect
 | |
| 
 | |
| 
 | |
|         // Calculate sub blocks
 | |
|         for(size_t i1 = 0; i1 < keys_.size(); i1++) {
 | |
|           for(size_t i2 = 0; i2 < keys_.size(); i2++) {
 | |
|             // we only need the upper triangular entries
 | |
|             Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose();
 | |
|             if (i1==0 & i2==0){
 | |
|             std::cout << "Hoff"<< i1 << i2 << "=[" << Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose() << "];" << std::endl;
 | |
|             std::cout << "Hxoff"<< "=[" << Hx.at(i1) << "];" << std::endl;
 | |
|             std::cout << "Hloff"<< "=[" << Hl.at(i1) << "];" << std::endl;
 | |
|             std::cout << "Hloff2"<< "=[" << Hl.at(i2) << "];" << std::endl;
 | |
|             std::cout << "C"<< "=[" << C << "];" << std::endl;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         // Populate Gs and gs
 | |
|         int GsCount = 0;
 | |
|         for(size_t i1 = 0; i1 < keys_.size(); i1++) {
 | |
|           gs.at(i1) = Hx.at(i1).transpose() * b.at(i1);
 | |
| 
 | |
|           for(size_t i2 = 0; i2 < keys_.size(); i2++) {
 | |
|             gs.at(i1) -= Hxl[i1][i2] * b.at(i2);
 | |
| 
 | |
|             if (i2 == i1){
 | |
|               Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2);
 | |
|               std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
 | |
|               std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
 | |
|               std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
 | |
|               GsCount++;
 | |
|             }
 | |
|             if (i2 > i1) {
 | |
|               Gs.at(GsCount) = - Hxl[i1][i2] * Hx.at(i2);
 | |
|               std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl;
 | |
|               std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl;
 | |
|               std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl;
 | |
|               GsCount++;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
| //        std::cout << "GsCount  " << GsCount << std::endl;
 | |
| //      }
 | |
| 
 | |
|       // debug only
 | |
|       std::vector<Matrix> Gs2(keys_.size()*(keys_.size()+1)/2);
 | |
|       std::vector<Vector> gs2(keys_.size());
 | |
| 
 | |
| //      { // version with full matrix multiplication
 | |
|         // ==========================================================================================================
 | |
|         Matrix Hx2 = zeros(2*keys_.size(), 6*keys_.size());
 | |
|         Matrix Hl2 = zeros(2*keys_.size(), 3);
 | |
|         Vector b2 = zero(2*keys_.size());
 | |
| 
 | |
|         for(size_t i = 0; i < measured_.size(); i++) {
 | |
|           Pose3 pose = cameraPoses.at(i);
 | |
|           PinholeCamera<CALIBRATION> camera(pose, *K_);
 | |
|           Matrix Hxi, Hli;
 | |
|            Vector bi = ( camera.project(*point,Hxi,Hli) - measured_.at(i) ).vector();
 | |
|            Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
 | |
|            Hl2.block( 2*i, 0, 2, 3  ) = Hli;
 | |
| //           std::cout << "Hxi= \n" << Hxi << std::endl;
 | |
| //           std::cout << "Hxi.transpose() * Hxi= \n" << Hxi.transpose() * Hxi << std::endl;
 | |
| //           std::cout << "Hxl.transpose() * Hxl= \n" << Hli.transpose() * Hli << std::endl;
 | |
|            subInsert(b2,bi,2*i);
 | |
| 
 | |
| //           std::cout << "================= measurement " << i << std::endl;
 | |
| //           std::cout << "Hx " << Hx2 << std::endl;
 | |
| //           std::cout << "Hl " << Hl2 << std::endl;
 | |
| //           std::cout << "b " << b2.transpose() << std::endl;
 | |
| //           std::cout << "b.at(i)  " << b.at(i)  << std::endl;
 | |
| //           std::cout << "Hxi - Hx.at(i) " << Hxi - Hx.at(i) << std::endl;
 | |
| //           std::cout << "Hli - Hl.at(i) " << Hli - Hl.at(i) << std::endl;
 | |
|         }
 | |
| 
 | |
|         // Shur complement trick
 | |
|         Matrix H(6*keys_.size(), 6*keys_.size());
 | |
|         Matrix3 C2 = (Hl2.transpose() * Hl2).inverse();
 | |
|         H = Hx2.transpose() * Hx2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * Hx2;
 | |
| 
 | |
|         std::cout << "Hx2" << "=[" << Hx2 << "];" << std::endl;
 | |
|         std::cout << "Hl2" << "=[" << Hl2 << "];" << std::endl;
 | |
|         std::cout << "H" << "=[" << H << "];" << std::endl;
 | |
| 
 | |
| 
 | |
|         std::cout << "Cnoinv2"<< "=[" << Hl2.transpose() * Hl2 << "];" << std::endl;
 | |
|         std::cout << "C2"<< "=[" << C2 << "];" << std::endl;
 | |
| 
 | |
| //        std::cout << "Hx2= \n" << Hx2 << std::endl;
 | |
| //        std::cout << "Hx2.transpose() * Hx2= \n" << Hx2.transpose() * Hx2 << std::endl;
 | |
| 
 | |
|         Vector gs2_vector =  Hx2.transpose() * b2 -  Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2;
 | |
| 
 | |
|         std::cout << "================================================================================"  << std::endl;
 | |
| 
 | |
|         // Populate Gs and gs
 | |
|         int GsCount2 = 0;
 | |
|         for(size_t i1 = 0; i1 < keys_.size(); i1++) {
 | |
|           gs2.at(i1) = sub(gs2_vector, 6*i1, 6*i1 + 6);
 | |
| 
 | |
|           for(size_t i2 = 0; i2 < keys_.size(); i2++) {
 | |
|             if (i2 >= i1) {
 | |
|               Gs2.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
 | |
|               GsCount2++;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| //      }
 | |
| //
 | |
|       // Compare blockwise and full version
 | |
|       bool gs2_equal_gs = true;
 | |
|       for(size_t i = 0; i < measured_.size(); i++) {
 | |
|         std::cout << "gs.at(i) " << gs.at(i).transpose() << std::endl;
 | |
|         std::cout << "gs2.at(i) " << gs2.at(i).transpose() << std::endl;
 | |
|         std::cout << "gs.error  " << (gs.at(i)- gs2.at(i)).transpose() << std::endl;
 | |
|         if( !equal(gs.at(i), gs2.at(i)), 1e-7) {
 | |
|           gs2_equal_gs = false;
 | |
|         }
 | |
|       }
 | |
|       std::cout << "gs2_equal_gs " << gs2_equal_gs << std::endl;
 | |
| 
 | |
|       for(size_t i = 0; i < keys_.size()*(keys_.size()+1)/2; i++) {
 | |
|         std::cout << "Gs.at(i) " << Gs.at(i).transpose() << std::endl;
 | |
|         std::cout << "Gs2.at(i) " << Gs2.at(i).transpose() << std::endl;
 | |
|         std::cout << "Gs.error  " << (Gs.at(i)- Gs2.at(i)).transpose() << std::endl;
 | |
|       }
 | |
|       std::cout << "Gs2_equal_Gs " << gs2_equal_gs << std::endl;
 | |
| 
 | |
| 
 | |
|       // ==========================================================================================================
 | |
|       return HessianFactor::shared_ptr(new HessianFactor(js, Gs, gs, f));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Calculate the error of the factor.
 | |
|      * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
 | |
|      * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
 | |
|      * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
 | |
|      */
 | |
|     virtual double error(const Values& values) const {
 | |
|       if (this->active(values)) {
 | |
|         double overallError=0;
 | |
| 
 | |
|         // Collect all poses (Cameras)
 | |
|         std::vector<Pose3> cameraPoses;
 | |
| 
 | |
|         BOOST_FOREACH(const Key& k, keys_) {
 | |
|           if(body_P_sensor_)
 | |
|             cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
 | |
|           else
 | |
|             cameraPoses.push_back(values.at<Pose3>(k));
 | |
|         }
 | |
| 
 | |
|         // We triangulate the 3D position of the landmark
 | |
|         boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_);
 | |
| 
 | |
|         if(point)
 | |
|         { // triangulation produced a good estimate of landmark position
 | |
| 
 | |
| //          std::cout << "point " << *point << std::endl;
 | |
| 
 | |
|           for(size_t i = 0; i < measured_.size(); i++) {
 | |
|             Pose3 pose = cameraPoses.at(i);
 | |
|             PinholeCamera<CALIBRATION> camera(pose, *K_);
 | |
| //            std::cout << "pose.compose(*body_P_sensor_) " << pose << std::endl;
 | |
| 
 | |
|             Point2 reprojectionError(camera.project(*point) - measured_.at(i));
 | |
| //            std::cout << "reprojectionError " << reprojectionError << std::endl;
 | |
|             overallError += noise_->distance( reprojectionError.vector() );
 | |
| //            std::cout << "noise_->distance( reprojectionError.vector() ) " << noise_->distance( reprojectionError.vector() ) << std::endl;
 | |
|           }
 | |
|           return sqrt(overallError);
 | |
|         }else{ // triangulation failed: we deactivate the factor, then the error should not contribute to the overall error
 | |
|           return 0.0;
 | |
|         }
 | |
|       } else {
 | |
|         return 0.0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /** return the measurements */
 | |
|     const Vector& measured() const {
 | |
|       return measured_;
 | |
|     }
 | |
| 
 | |
|     /** return the calibration object */
 | |
|     inline const boost::shared_ptr<CALIBRATION> calibration() const {
 | |
|       return K_;
 | |
|     }
 | |
| 
 | |
|     /** return verbosity */
 | |
|     inline bool verboseCheirality() const { return verboseCheirality_; }
 | |
| 
 | |
|     /** return flag for throwing cheirality exceptions */
 | |
|     inline bool throwCheirality() const { return throwCheirality_; }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     /// Serialization function
 | |
|     friend class boost::serialization::access;
 | |
|     template<class ARCHIVE>
 | |
|     void serialize(ARCHIVE & ar, const unsigned int version) {
 | |
|       ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
 | |
|       ar & BOOST_SERIALIZATION_NVP(measured_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(K_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
 | |
|     }
 | |
|   };
 | |
| } // \ namespace gtsam
 |