251 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file    GaussianFactorGraph.h
 | 
						|
 * @brief   Linear Factor Graph where all factors are Gaussians
 | 
						|
 * @author  Kai Ni
 | 
						|
 * @author  Christian Potthast
 | 
						|
 * @author  Alireza Fathi
 | 
						|
 */ 
 | 
						|
 | 
						|
// $Id: GaussianFactorGraph.h,v 1.24 2009/08/14 20:48:51 acunning Exp $
 | 
						|
 | 
						|
// \callgraph
 | 
						|
 
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <boost/shared_ptr.hpp>
 | 
						|
#include "FactorGraph.h"
 | 
						|
#include "Errors.h"
 | 
						|
#include "GaussianFactor.h"
 | 
						|
#include "GaussianBayesNet.h" // needed for MATLAB toolbox !!
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
	class Ordering;
 | 
						|
 | 
						|
  /**
 | 
						|
   * A Linear Factor Graph is a factor graph where all factors are Gaussian, i.e.
 | 
						|
   *   Factor == GaussianFactor
 | 
						|
   *   VectorConfig = A configuration of vectors
 | 
						|
   * Most of the time, linear factor graphs arise by linearizing a non-linear factor graph.
 | 
						|
   */
 | 
						|
  class GaussianFactorGraph : public FactorGraph<GaussianFactor> {
 | 
						|
  public:
 | 
						|
 | 
						|
    /**
 | 
						|
     * Default constructor 
 | 
						|
     */
 | 
						|
    GaussianFactorGraph() {}
 | 
						|
 | 
						|
    /**
 | 
						|
     * Constructor that receives a Chordal Bayes Net and returns a GaussianFactorGraph
 | 
						|
     */
 | 
						|
    GaussianFactorGraph(const GaussianBayesNet& CBN);
 | 
						|
 | 
						|
  	/** Add a null factor */
 | 
						|
    inline void add(const Vector& b) {
 | 
						|
    	push_back(sharedFactor(new GaussianFactor(b)));
 | 
						|
  	}
 | 
						|
 | 
						|
  	/** Add a unary factor */
 | 
						|
    inline void add(const Symbol& key1, const Matrix& A1,
 | 
						|
  			const Vector& b, double sigma) {
 | 
						|
    	push_back(sharedFactor(new GaussianFactor(key1,A1,b,sigma)));
 | 
						|
  	}
 | 
						|
 | 
						|
  	/** Add a binary factor */
 | 
						|
    inline void add(const Symbol& key1, const Matrix& A1,
 | 
						|
  			const Symbol& key2, const Matrix& A2,
 | 
						|
  			const Vector& b, double sigma) {
 | 
						|
    	push_back(sharedFactor(new GaussianFactor(key1,A1,key2,A2,b,sigma)));
 | 
						|
  	}
 | 
						|
 | 
						|
  	/** Add a ternary factor */
 | 
						|
    inline void add(const Symbol& key1, const Matrix& A1,
 | 
						|
  			const Symbol& key2, const Matrix& A2,
 | 
						|
  			const Symbol& key3, const Matrix& A3,
 | 
						|
  			const Vector& b, double sigma) {
 | 
						|
    	push_back(sharedFactor(new GaussianFactor(key1,A1,key2,A2,key3,A3,b,sigma)));
 | 
						|
  	}
 | 
						|
 | 
						|
  	/** Add an n-ary factor */
 | 
						|
    inline void add(const std::vector<std::pair<Symbol, Matrix> > &terms,
 | 
						|
  	    const Vector &b, double sigma) {
 | 
						|
    	push_back(sharedFactor(new GaussianFactor(terms,b,sigma)));
 | 
						|
  	}
 | 
						|
 | 
						|
		/** return A*x-b */
 | 
						|
		Errors errors(const VectorConfig& x) const;
 | 
						|
 | 
						|
			/** unnormalized error */
 | 
						|
		double error(const VectorConfig& x) const;
 | 
						|
 | 
						|
		/** return A*x */
 | 
						|
		Errors operator*(const VectorConfig& x) const;
 | 
						|
 | 
						|
		/** return A^x */
 | 
						|
		VectorConfig operator^(const Errors& e) const;
 | 
						|
 | 
						|
  	/**
 | 
						|
  	 * Calculate Gradient of A^(A*x-b) for a given config
 | 
						|
  	 * @param x: VectorConfig specifying where to calculate gradient
 | 
						|
  	 * @return gradient, as a VectorConfig as well
 | 
						|
  	 */
 | 
						|
  	VectorConfig gradient(const VectorConfig& x) const;
 | 
						|
 | 
						|
		/** Unnormalized probability. O(n) */
 | 
						|
		double probPrime(const VectorConfig& c) const {
 | 
						|
			return exp(-0.5 * error(c));
 | 
						|
		}
 | 
						|
 | 
						|
    /**
 | 
						|
     * find the separator, i.e. all the nodes that have at least one
 | 
						|
     * common factor with the given node. FD: not used AFAIK.
 | 
						|
     */
 | 
						|
    std::set<Symbol> find_separator(const Symbol& key) const;
 | 
						|
 | 
						|
  	/**
 | 
						|
     * Eliminate a single node yielding a conditional Gaussian
 | 
						|
     * Eliminates the factors from the factor graph through findAndRemoveFactors
 | 
						|
     * and adds a new factor on the separator to the factor graph
 | 
						|
     */
 | 
						|
    GaussianConditional::shared_ptr eliminateOne(const Symbol& key);
 | 
						|
 | 
						|
    /**
 | 
						|
     * eliminate factor graph in place(!) in the given order, yielding
 | 
						|
     * a chordal Bayes net. Allows for passing an incomplete ordering
 | 
						|
     * that does not completely eliminate the graph
 | 
						|
     */
 | 
						|
    GaussianBayesNet eliminate(const Ordering& ordering);
 | 
						|
		
 | 
						|
    /**
 | 
						|
     * optimize a linear factor graph
 | 
						|
     * @param ordering fg in order
 | 
						|
     */
 | 
						|
    VectorConfig optimize(const Ordering& ordering);
 | 
						|
 | 
						|
    /**
 | 
						|
     * shared pointer versions for MATLAB
 | 
						|
     */
 | 
						|
    boost::shared_ptr<GaussianBayesNet> eliminate_(const Ordering&);
 | 
						|
    boost::shared_ptr<VectorConfig> optimize_(const Ordering&);
 | 
						|
 | 
						|
    /**
 | 
						|
     * static function that combines two factor graphs
 | 
						|
     * @param const &lfg1 Linear factor graph
 | 
						|
     * @param const &lfg2 Linear factor graph
 | 
						|
     * @return a new combined factor graph
 | 
						|
     */
 | 
						|
    static GaussianFactorGraph combine2(const GaussianFactorGraph& lfg1,
 | 
						|
				const GaussianFactorGraph& lfg2);
 | 
						|
		
 | 
						|
    /**
 | 
						|
     * combine two factor graphs
 | 
						|
     * @param *lfg Linear factor graph
 | 
						|
     */
 | 
						|
    void combine(const GaussianFactorGraph &lfg);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Find all variables and their dimensions
 | 
						|
     * @return The set of all variable/dimension pairs
 | 
						|
     */
 | 
						|
    Dimensions dimensions() const;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Add zero-mean i.i.d. Gaussian prior terms to each variable
 | 
						|
     * @param sigma Standard deviation of Gaussian
 | 
						|
     */
 | 
						|
    GaussianFactorGraph add_priors(double sigma) const;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return RHS (b./sigmas) as Errors class
 | 
						|
     */
 | 
						|
    Errors rhs() const;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return (dense) matrix associated with factor graph
 | 
						|
     * @param ordering of variables needed for matrix column order
 | 
						|
     */
 | 
						|
    std::pair<Matrix,Vector> matrix (const Ordering& ordering) const;
 | 
						|
 | 
						|
    /**
 | 
						|
     * get the starting column indices for all variables
 | 
						|
     * @param ordering of variables needed for matrix column order
 | 
						|
     * @return The set of all variable/index pairs
 | 
						|
     */
 | 
						|
    Dimensions columnIndices(const Ordering& ordering) const;
 | 
						|
 | 
						|
  	/**
 | 
						|
  	 * Return 3*nzmax matrix where the rows correspond to the vectors i, j, and s
 | 
						|
  	 * to generate an m-by-n sparse matrix, which can be given to MATLAB's sparse function.
 | 
						|
  	 * The standard deviations are baked into A and b
 | 
						|
  	 * @param ordering of variables needed for matrix column order
 | 
						|
  	 */
 | 
						|
  	Matrix sparse(const Ordering& ordering) const;
 | 
						|
 | 
						|
  	/**
 | 
						|
  	 * Take an optimal step in direction d by calculating optimal step-size
 | 
						|
  	 * @param x: starting point for search
 | 
						|
  	 * @param d: search direction
 | 
						|
  	 */
 | 
						|
  	VectorConfig optimalUpdate(const VectorConfig& x0, const VectorConfig& d) const;
 | 
						|
 | 
						|
  	/**
 | 
						|
		 * Find solution using gradient descent
 | 
						|
		 * @param x0: VectorConfig specifying initial estimate
 | 
						|
		 * @return solution
 | 
						|
		 */
 | 
						|
		VectorConfig steepestDescent(const VectorConfig& x0, bool verbose = false,
 | 
						|
				double epsilon = 1e-3, size_t maxIterations = 0) const;
 | 
						|
 | 
						|
		/**
 | 
						|
		 * shared pointer versions for MATLAB
 | 
						|
		 */
 | 
						|
		boost::shared_ptr<VectorConfig>
 | 
						|
		steepestDescent_(const VectorConfig& x0, bool verbose = false,
 | 
						|
				double epsilon = 1e-3, size_t maxIterations = 0) const;
 | 
						|
 | 
						|
		/**
 | 
						|
		 * Find solution using conjugate gradient descent
 | 
						|
		 * @param x0: VectorConfig specifying initial estimate
 | 
						|
		 * @return solution
 | 
						|
		 */
 | 
						|
		VectorConfig conjugateGradientDescent(const VectorConfig& x0, bool verbose =
 | 
						|
				false, double epsilon = 1e-3, size_t maxIterations = 0) const;
 | 
						|
 | 
						|
		/**
 | 
						|
		 * shared pointer versions for MATLAB
 | 
						|
		 */
 | 
						|
		boost::shared_ptr<VectorConfig> conjugateGradientDescent_(
 | 
						|
				const VectorConfig& x0, bool verbose = false, double epsilon = 1e-3,
 | 
						|
				size_t maxIterations = 0) const;
 | 
						|
  };
 | 
						|
 | 
						|
  /**
 | 
						|
   * A linear system solver using factorization
 | 
						|
   */
 | 
						|
  template <class NonlinearGraph, class Config>
 | 
						|
  class Factorization {
 | 
						|
  public:
 | 
						|
  	Factorization() {}
 | 
						|
 | 
						|
  	Factorization(const NonlinearGraph& g, const Config& config) {}
 | 
						|
 | 
						|
  	/**
 | 
						|
  	 * solve for the optimal displacement in the tangent space, and then solve
 | 
						|
  	 * the resulted linear system
 | 
						|
  	 */
 | 
						|
  	VectorConfig optimize(GaussianFactorGraph& fg, const Ordering& ordering) const {
 | 
						|
  		return fg.optimize(ordering);
 | 
						|
  	}
 | 
						|
 | 
						|
		/**
 | 
						|
		 * linearize the non-linear graph around the current config,
 | 
						|
		 */
 | 
						|
  	VectorConfig linearizeAndOptimize(const NonlinearGraph& g, const Config& config,
 | 
						|
  			const Ordering& ordering) const {
 | 
						|
  		GaussianFactorGraph linear = g.linearize(config);
 | 
						|
  		return optimize(linear, ordering);
 | 
						|
  	}
 | 
						|
  };
 | 
						|
}
 |