135 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    LCNLPSolver.cpp
 | |
|  * @author  Duy-Nguyen Ta
 | |
|  * @author  Krunal Chande
 | |
|  * @author  Luca Carlone
 | |
|  * @date    Dec 15, 2014
 | |
|  */
 | |
| 
 | |
| #include <gtsam_unstable/nonlinear/LCNLPSolver.h>
 | |
| #include <gtsam_unstable/linear/QPSolver.h>
 | |
| #include <iostream>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool LCNLPSolver::isStationary(const VectorValues& delta) const {
 | |
|   return delta.vector().lpNorm<Eigen::Infinity>() < errorTol;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool LCNLPSolver::isPrimalFeasible(const LCNLPState& state) const {
 | |
|   return lcnlp_.linearEqualities.checkFeasibility(state.values, errorTol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool LCNLPSolver::isDualFeasible(const VectorValues& duals) const {
 | |
|   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, lcnlp_.linearInequalities) {
 | |
|     NonlinearConstraint::shared_ptr inequality = boost::dynamic_pointer_cast<NonlinearConstraint>(factor);
 | |
|     Key dualKey = inequality->dualKey();
 | |
|     if (!duals.exists(dualKey)) continue; // should be inactive constraint!
 | |
|     double dual = duals.at(dualKey)[0];   // because we only support single-valued inequalities
 | |
|     if (dual > 0.0) {   // See the explanation in QPSolver::identifyLeavingConstraint, we want dual < 0 ?
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool LCNLPSolver::isComplementary(const LCNLPState& state) const {
 | |
|   return lcnlp_.linearInequalities.checkFeasibilityAndComplimentary(state.values, state.duals, errorTol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool LCNLPSolver::checkConvergence(const LCNLPState& state, const VectorValues& delta) const {
 | |
|   return isStationary(delta) && isPrimalFeasible(state) && isDualFeasible(state.duals) && isComplementary(state);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorValues LCNLPSolver::initializeDuals() const {
 | |
|   VectorValues duals;
 | |
|   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, lcnlp_.linearEqualities) {
 | |
|     NonlinearConstraint::shared_ptr constraint = boost::dynamic_pointer_cast<NonlinearConstraint>(factor);
 | |
|     duals.insert(constraint->dualKey(), zero(factor->dim()));
 | |
|   }
 | |
| 
 | |
|   return duals;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| std::pair<Values, VectorValues> LCNLPSolver::optimize(const Values& initialValues, bool debug) const {
 | |
|   LCNLPState state(initialValues);
 | |
|   state.duals = initializeDuals();
 | |
|   while (!state.converged && state.iterations < 100) {
 | |
|     if (debug)
 | |
|     std::cout << "state: iteration " << state.iterations << std::endl;
 | |
|     state = iterate(state, debug);
 | |
|   }
 | |
|   if (debug)
 | |
|   std::cout << "Number of iterations: " << state.iterations << std::endl;
 | |
|   return std::make_pair(state.values, state.duals);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| LCNLPState LCNLPSolver::iterate(const LCNLPState& state, bool debug) const {
 | |
| 
 | |
|   // construct the qp subproblem
 | |
|   QP qp;
 | |
|   qp.cost = *lcnlp_.cost.linearize(state.values);
 | |
|   qp.equalities.add(*lcnlp_.linearEqualities.linearize(state.values));
 | |
|   qp.inequalities.add(*lcnlp_.linearInequalities.linearize(state.values));
 | |
| 
 | |
| //  if (debug)
 | |
| //    qp.print("QP subproblem:");
 | |
| 
 | |
|   // solve the QP subproblem
 | |
|   VectorValues delta, duals;
 | |
|   QPSolver qpSolver(qp);
 | |
|   if (state.iterations == 0)
 | |
|     boost::tie(delta, duals) = qpSolver.optimize();
 | |
|   else {
 | |
|     VectorValues zeroInitialValues;
 | |
|     BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, state.values) {
 | |
|       zeroInitialValues.insert(key_value.key, zero(key_value.value.dim()));
 | |
|     }
 | |
|     boost::tie(delta, duals) = qpSolver.optimize(zeroInitialValues, state.duals);
 | |
|   }
 | |
| 
 | |
|   if (debug)
 | |
|     state.values.print("state.values: ");
 | |
|   if (debug)
 | |
|     delta.print("delta = ");
 | |
| 
 | |
| //  if (debug)
 | |
| //    duals.print("duals = ");
 | |
| 
 | |
|   // update new state
 | |
|   LCNLPState newState;
 | |
|   newState.values = state.values.retract(delta);
 | |
|   newState.duals = duals;
 | |
|   newState.converged = checkConvergence(newState, delta);
 | |
|   newState.iterations = state.iterations + 1;
 | |
| 
 | |
|   if (debug)
 | |
|     newState.print("newState: ");
 | |
| 
 | |
|   return newState;
 | |
| }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |