145 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    SFMExample.cpp
 | |
|  * @brief   This file is to compare the ordering performance for COLAMD vs METIS.
 | |
|  * Example problem is to solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file.
 | |
|  * @author  Frank Dellaert, Zhaoyang Lv
 | |
|  */
 | |
| 
 | |
| // For an explanation of headers, see SFMExample.cpp
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/inference/Ordering.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/GeneralSFMFactor.h>
 | |
| #include <gtsam/slam/dataset.h> // for loading BAL datasets !
 | |
| 
 | |
| #include <gtsam/base/timing.h>
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using symbol_shorthand::C;
 | |
| using symbol_shorthand::P;
 | |
| 
 | |
| // We will be using a projection factor that ties a SFM_Camera to a 3D point.
 | |
| // An SFM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
 | |
| // and has a total of 9 free parameters
 | |
| typedef GeneralSFMFactor<SfM_Camera,Point3> MyFactor;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main (int argc, char* argv[]) {
 | |
| 
 | |
|   // Find default file, but if an argument is given, try loading a file
 | |
|   string filename = findExampleDataFile("dubrovnik-3-7-pre");
 | |
|   if (argc>1) filename = string(argv[1]);
 | |
| 
 | |
|   // Load the SfM data from file
 | |
|   SfM_data mydata;
 | |
|   readBAL(filename, mydata);
 | |
|   cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();
 | |
| 
 | |
|   // Create a factor graph
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // We share *one* noiseModel between all projection factors
 | |
|   noiseModel::Isotropic::shared_ptr noise =
 | |
|       noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | |
| 
 | |
|   // Add measurements to the factor graph
 | |
|   size_t j = 0;
 | |
|   BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
 | |
|     BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
 | |
|       size_t i = m.first;
 | |
|       Point2 uv = m.second;
 | |
|       graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
 | |
|     }
 | |
|     j += 1;
 | |
|   }
 | |
| 
 | |
|   // Add a prior on pose x1. This indirectly specifies where the origin is.
 | |
|   // and a prior on the position of the first landmark to fix the scale
 | |
|   graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0],  noiseModel::Isotropic::Sigma(9, 0.1)));
 | |
|   graph.push_back(PriorFactor<Point3>    (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));
 | |
| 
 | |
|   // Create initial estimate
 | |
|   Values initial;
 | |
|   size_t i = 0; j = 0;
 | |
|   BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras) initial.insert(C(i++), camera);
 | |
|   BOOST_FOREACH(const SfM_Track& track, mydata.tracks)    initial.insert(P(j++), track.p);
 | |
| 
 | |
|   /** ---------------  COMPARISON  -----------------------**/
 | |
|   /** ----------------------------------------------------**/
 | |
| 
 | |
|   LevenbergMarquardtParams params_using_COLAMD, params_using_METIS;
 | |
|   try {
 | |
|     params_using_METIS.setVerbosity("ERROR");
 | |
|     gttic_(METIS_ORDERING);
 | |
|     params_using_METIS.ordering = Ordering::Create(Ordering::METIS, graph);
 | |
|     gttoc_(METIS_ORDERING);
 | |
| 
 | |
|     params_using_COLAMD.setVerbosity("ERROR");
 | |
|     gttic_(COLAMD_ORDERING);
 | |
|     params_using_COLAMD.ordering = Ordering::Create(Ordering::COLAMD, graph);
 | |
|     gttoc_(COLAMD_ORDERING);
 | |
|   } catch (exception& e) {
 | |
|     cout << e.what();
 | |
|   }
 | |
| 
 | |
|   // expect they have different ordering results
 | |
|   if(params_using_COLAMD.ordering == params_using_METIS.ordering) {
 | |
|     cout << "COLAMD and METIS produce the same ordering. "
 | |
|          << "Problem here!!!" << endl;
 | |
|   }
 | |
| 
 | |
|   /* Optimize the graph with METIS and COLAMD and time the results */
 | |
| 
 | |
|   Values result_METIS, result_COLAMD;
 | |
|   try {
 | |
|     gttic_(OPTIMIZE_WITH_METIS);
 | |
|     LevenbergMarquardtOptimizer lm_METIS(graph, initial, params_using_METIS);
 | |
|     result_METIS = lm_METIS.optimize();
 | |
|     gttoc_(OPTIMIZE_WITH_METIS);
 | |
| 
 | |
|     gttic_(OPTIMIZE_WITH_COLAMD);
 | |
|     LevenbergMarquardtOptimizer lm_COLAMD(graph, initial, params_using_COLAMD);
 | |
|     result_COLAMD = lm_COLAMD.optimize();
 | |
|     gttoc_(OPTIMIZE_WITH_COLAMD);
 | |
|   } catch (exception& e) {
 | |
|     cout << e.what();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   { // printing the result
 | |
| 
 | |
|     cout << "COLAMD final error: " << graph.error(result_COLAMD) << endl;
 | |
|     cout << "METIS final error: " << graph.error(result_METIS) << endl;
 | |
| 
 | |
|     cout << endl << endl;
 | |
| 
 | |
|     cout << "Time comparison by solving " << filename << " results:" << endl;
 | |
|     cout << boost::format("%1% point tracks and %2% cameras\n") \
 | |
|             % mydata.number_tracks() % mydata.number_cameras() \
 | |
|          << endl;
 | |
| 
 | |
|     tictoc_print_();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |